Advertisements
Advertisements
Question
Solution
\[Let\ I = \int_0^\frac{\pi}{2} \frac{\sin x \cos x}{\cos^2 x + 3 \cos x + 2} d x . Then, \]
\[Let\ \cos x = t . Then, - \sin\ x\ dx\ = dt\]
\[When\ x = 0, t = 1\ and\ x\ = \frac{\pi}{2}, t = 0\]
\[ \therefore I = - \int_1^0 \frac{t dt}{t^2 + 3t + 2}\]
\[ \Rightarrow I = \int_1^0 \frac{- t dt}{\left( t + 2 \right)\left( t + 1 \right)}\]
\[ \Rightarrow I = \int_1^0 \left( \frac{1}{\left( t + 1 \right)} - \frac{2}{\left( t + 2 \right)} \right) dt\]
\[ \Rightarrow I = \left[ \log \left( t + 1 \right) - 2 \log \left( t + 2 \right) \right]_1^0 \]
\[ \Rightarrow I = \left[ \log \frac{\left( t + 1 \right)}{\left( t + 2 \right)^2} \right]_0^1 \]
\[ \Rightarrow I = \left[ \log \left( \frac{1}{4} \right) - \log \left( \frac{2}{9} \right) \right]_0^1 \]
\[ \Rightarrow I = \log \frac{9}{8}\]
APPEARS IN
RELATED QUESTIONS
If `f` is an integrable function such that f(2a − x) = f(x), then prove that
The value of \[\int\limits_0^{2\pi} \sqrt{1 + \sin\frac{x}{2}}dx\] is
The value of the integral \[\int\limits_0^{\pi/2} \frac{\sqrt{\cos x}}{\sqrt{\cos x} + \sqrt{\sin x}} dx\] is
\[\int\limits_0^\infty \frac{1}{1 + e^x} dx\] equals
Given that \[\int\limits_0^\infty \frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)\left( x^2 + c^2 \right)} dx = \frac{\pi}{2\left( a + b \right)\left( b + c \right)\left( c + a \right)},\] the value of \[\int\limits_0^\infty \frac{dx}{\left( x^2 + 4 \right)\left( x^2 + 9 \right)},\]
The derivative of \[f\left( x \right) = \int\limits_{x^2}^{x^3} \frac{1}{\log_e t} dt, \left( x > 0 \right),\] is
Evaluate : \[\int\limits_0^\pi/4 \frac{\sin x + \cos x}{16 + 9 \sin 2x}dx\] .
\[\int\limits_0^{\pi/3} \frac{\cos x}{3 + 4 \sin x} dx\]
\[\int\limits_1^2 \frac{1}{x^2} e^{- 1/x} dx\]
\[\int\limits_0^1 \left( \cos^{- 1} x \right)^2 dx\]
\[\int\limits_0^4 x dx\]
Using second fundamental theorem, evaluate the following:
`int_1^2 (x - 1)/x^2 "d"x`
Evaluate the following:
`Γ (9/2)`
Evaluate the following:
`int_0^oo "e"^(- x/2) x^5 "d"x`
Choose the correct alternative:
`int_0^oo "e"^(-2x) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is
Choose the correct alternative:
If n > 0, then Γ(n) is
Choose the correct alternative:
`Γ(3/2)`
Choose the correct alternative:
`int_0^oo x^4"e"^-x "d"x` is
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
Evaluate: `int_(-1)^2 |x^3 - 3x^2 + 2x|dx`