Advertisements
Advertisements
Question
Solution
\[\int_0^\frac{\pi}{2} \cos^2 x\ d x\]
\[ = \int_0^\frac{\pi}{2} \frac{1 + \cos2x}{2} dx\]
\[ = \frac{1}{2} \int_0^\frac{\pi}{2} \left( 1 + \cos2x \right) dx\]
\[ = \frac{1}{2} \left[ x + \frac{\sin2x}{2} \right]_0^\frac{\pi}{2} \]
\[ = \frac{1}{2}\left[ \frac{\pi}{2} + 0 \right]\]
\[ = \frac{\pi}{4}\]
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
Evaluate the following integral:
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
\[\int\limits_1^2 x\sqrt{3x - 2} dx\]
\[\int\limits_1^5 \frac{x}{\sqrt{2x - 1}} dx\]
\[\int\limits_0^1 \frac{1 - x}{1 + x} dx\]
\[\int\limits_0^{\pi/2} \frac{\cos x}{1 + \sin^2 x} dx\]
\[\int\limits_0^{\pi/4} \sin 2x \sin 3x dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \cot^7 x} dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_0^{15} \left[ x^2 \right] dx\]
\[\int\limits_1^3 \left( x^2 + 3x \right) dx\]
Evaluate the following using properties of definite integral:
`int_0^1 log (1/x - 1) "d"x`
Choose the correct alternative:
`int_(-1)^1 x^3 "e"^(x^4) "d"x` is
Choose the correct alternative:
If f(x) is a continuous function and a < c < b, then `int_"a"^"c" f(x) "d"x + int_"c"^"b" f(x) "d"x` is