Advertisements
Advertisements
Question
Evaluate : \[\int\frac{dx}{\sin^2 x \cos^2 x}\] .
Solution
Let I = \[\int\frac{dx}{\sin^2 x \cos^2 x}\]
Dividing the numerator and denominator by cos4 x, we get:
I = \[\int\frac{se c^2 x \cdot se c^2 x}{\tan^2 x}dx\]
\[\int\frac{\left( 1 + \tan^2 x \right) \cdot se c^2 x}{\tan^2 x}dx\]
Put tan x = t
⇒ \[se c^2 xdx = dt\]
∴ I = \[\int\frac{1 + t^2}{t^2}dt\] = \[\int1dt + \int\frac{1}{t^2}dt\]
⇒ I = t −\[\frac{1}{t}\] + C
⇒ I = tan x − cot x + C
∴ \[\int\frac{dx}{\sin^2 x \cos^2 x}\] = tan x − cot x + C
APPEARS IN
RELATED QUESTIONS
\[\int\limits_0^{( \pi )^{2/3}} \sqrt{x} \cos^2 x^{3/2} dx\]
If \[\int\limits_0^a 3 x^2 dx = 8,\] write the value of a.
\[\int\limits_0^{\pi/2} \frac{1}{2 + \cos x} dx\] equals
The value of \[\int\limits_0^\pi \frac{1}{5 + 3 \cos x} dx\] is
If f (a + b − x) = f (x), then \[\int\limits_a^b\] x f (x) dx is equal to
Evaluate : \[\int\limits_0^{2\pi} \cos^5 x dx\] .
\[\int\limits_1^3 \left| x^2 - 4 \right| dx\]
\[\int\limits_0^{\pi/2} \frac{1}{1 + \tan^3 x} dx\]
\[\int\limits_{- 1}^1 e^{2x} dx\]
\[\int\limits_1^3 \left( 2 x^2 + 5x \right) dx\]
Evaluate the following:
`int_1^4` f(x) dx where f(x) = `{{:(4x + 3",", 1 ≤ x ≤ 2),(3x + 5",", 2 < x ≤ 4):}`
Evaluate the following using properties of definite integral:
`int_0^1 x/((1 - x)^(3/4)) "d"x`
Evaluate the following:
`int_0^oo "e"^(-mx) x^6 "d"x`
Evaluate the following integrals as the limit of the sum:
`int_0^1 (x + 4) "d"x`
Choose the correct alternative:
`Γ(3/2)`
Find `int sqrt(10 - 4x + 4x^2) "d"x`