English

Evaluate : π 4 ∫ 0 Tan X D X . - Mathematics

Advertisements
Advertisements

Question

Evaluate : \[\int\limits_0^\frac{\pi}{4} \tan x dx\] .

Solution

I = \[\int\limits_0^\frac{\pi}{4} tan \ x \ dx\]

= \[\left[ \log\left| secx \right| \right]_0^\frac{\pi}{4}\]
= \[\log\left| sec\frac{\pi}{4} \right| - \log\left| sec0 \right|\]
= \[\log\left| \sqrt{2} \right| - \log1\]
= \[\frac{1}{2}\log2\]
∴ \[\int\limits_0^\frac{\pi}{4} tan\ x \ d x\] = \[\frac{1}{2}\log2\]
shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March) Foreign Set 1

Video TutorialsVIEW ALL [1]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×