Advertisements
Advertisements
Question
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x}dx\] .
Solution
I = \[\int_0^\pi \frac{x \tan x}{secx + \tan x}dx = \int_0^\pi \frac{x sin x}{1 + \sin x}dx\] ...(i)
∵ \[\int_0^a f\left( x \right)dx = \int_0^a f\left( a - x \right)dx\]
∴ I = \[\int_0^\pi \frac{\left( \pi - x \right) \sin\left( \pi - x \right)}{1 + \sin\left( \pi - x \right)}dx\]
⇒ I = \[\int_0^\pi \frac{\left( \pi - x \right) \sin x}{1 + sin x}dx\]
\[\int_0^\pi \frac{\pi \sin x - x \sin x}{1 + sinx}dx\] ...(ii)
Adding (i) and (ii), we get:
2I = \[\int_0^\pi \frac{\pi \sin x}{1 + sin x}dx\]
⇒ 2I = \[\pi \int_0^\pi \frac{\sin x \left( 1 - \sin x \right)}{1 - \sin^2 x}dx\]
⇒ 2I = \[\pi \int_0^\pi \frac{\sin x - \sin^2 x}{\cos^2 x}dx\]
⇒ 2I =\[\pi \int_0^\pi \left( \text { tanx secx } - \tan^2 x \right) dx\]
⇒ 2I =\[\pi \int_0^\pi \left\{ \text { tanx secx} - \left( \sec^2 x - 1 \right) \right\} dx\]
⇒ 2I = \[\pi \int_0^\pi \left\{ \text { tanx secx } - \sec^2 x + 1 \right\} dx\]
⇒ 2I = \[\pi \left[ \text { secx - tanx } + x \right]_0^\pi\]
⇒ 2I = \[\pi \left[ \left( \sec \pi - \tan \pi + \pi \right) - \left( \sec 0 - \tan 0 + 0 \right) \right]\]
⇒ 2I = \[\pi \left[ \left( - 1 - 0 + \pi \right) - \left( 1 - 0 + 0 \right) \right]\]
⇒ 2I = \[\pi \left( \pi - 2 \right)\]
⇒ I = \[\frac{\pi}{2} \left( \pi - 2 \right)\]
∴ \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x}dx\] = \[\frac{\pi}{2} \left( \pi - 2 \right)\].
APPEARS IN
RELATED QUESTIONS
Find `int dx/(5 - 8x - x^2)`
Find `int (cos theta)/((4 + sin^2 theta)(5 - 4 cos^2 theta)) d theta`
Evaluate `int (cos 2x + 2sin^2x)/(cos^2x) dx`
Evaluate : \[\int\limits_0^\frac{\pi}{4} \tan x dx\] .
Evaluate: `int ("sin 2x")/((1 + "sin x")(2 + "sin x")) "dx"`
Prove that `int_0^"a" "f(x)" "dx" = int_0^"a" "f"("a"-"x")"dx"` ,and hence evaluate `int_0^1 "x"^2(1 - "x")^"n""dx"`.
Evaluate the following:
`int x/(sqrt(x) + 1) "d"x` (Hint: Put `sqrt(x)` = z)
Evaluate the following:
`int sqrt(("a" + x)/("a" - x)) "d"x`
Evaluate the following:
`int x^(1/2)/(1 + x^(3/4)) "d"x` (Hint: Put `sqrt(x)` = z4)
Evaluate:
`∫ log_10 "x dx"`
The value of the integral `int_(-1)^2 [x] dx` is
`int (sin^8x - cos^8x)/(1 - 2sin^2x cos^2x) dx` is equal to
`int_0^oo (dx)/((x^2 + a^2)(x^2 + b^2))` is
Evaluate: `int_0^(pi/2) cosx/(( cos x/2 + sin x/2)^3) dx`
If `d/dx f(x) = 2x + 3/x` and f(1) = 1, then f(x) is ______.