Advertisements
Advertisements
Question
Evaluate the following:
`int x^(1/2)/(1 + x^(3/4)) "d"x` (Hint: Put `sqrt(x)` = z4)
Solution
Let I = `int x^(1/2)/(1 + x^(3/4)) "d"x`
Put x = t4
⇒ dx = 4t3d dt
∴ I = `4int ("t"^2("t"^3))/(1 + "t"^3) "dt"`
= `4int("t"^2 - "t"^2/(1 + "t"^3)) "dt"`
= `4 int "t"^2 "dt" - 4 int "t"^2(1 + "t"^3) "dt"`
= `4 "t"^3/3 - 4/3 int (3"t"^2)/(1 + "t"^3) "dt"`
= `4 "t"^3/3 - 4/3 log |1 + "t"^3| + "C"`
= `4/3 x^(3/4) - 4/3 log |(1 + x^(3/4))| + "C"`
APPEARS IN
RELATED QUESTIONS
Find `int dx/(5 - 8x - x^2)`
Evaluate `int (cos 2x + 2sin^2x)/(cos^2x) dx`
Evaluate : \[\int\limits_0^\frac{\pi}{4} \tan x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x}dx\] .
Evaluate: `int ("sin 2x")/((1 + "sin x")(2 + "sin x")) "dx"`
Prove that `int_0^"a" "f(x)" "dx" = int_0^"a" "f"("a"-"x")"dx"` ,and hence evaluate `int_0^1 "x"^2(1 - "x")^"n""dx"`.
Evaluate the following:
`int x/(sqrt(x) + 1) "d"x` (Hint: Put `sqrt(x)` = z)
Evaluate the following:
`int sqrt(("a" + x)/("a" - x)) "d"x`
Evaluate:
`∫ log_10 "x dx"`
The value of the integral `int_(-1)^2 [x] dx` is
`int (sin^8x - cos^8x)/(1 - 2sin^2x cos^2x) dx` is equal to
`int_0^oo (dx)/((x^2 + a^2)(x^2 + b^2))` is
Evaluate: `int_0^(pi/2) cosx/(( cos x/2 + sin x/2)^3) dx`
If `d/dx f(x) = 2x + 3/x` and f(1) = 1, then f(x) is ______.