Advertisements
Advertisements
Question
Evaluate the following:
`int sqrt(("a" + x)/("a" - x)) "d"x`
Solution
Let I = `int sqrt(("a" + x)/("a" - x)) "d"x`
Put x = `"a" cos 2theta`
⇒ dx = `-"a" * sin 2theta * 2 * "d"theta`
∴ I = `-2int sqrt(("a" + "a" cos 2theta)/("a" - "a" cos 2theta)) * "a" sin 2theta "d"theta`
= `-2"a" int sqrt((1 + cos 2theta)/(1 - cos 2theta)) sin 2theta "d"theta`
= `-2"a" int sqrt((2 cos^2theta)/(2 sin^2 theta)) sin 2theta "d"theta`
= `-2"a" int cot theta * sin 2theta "d"theta`
= `-2"a" int costheta/sintheta * 2 sin theta cos theta "d" theta`
= `-4"a" int cos^2theta "d"theta`
= `-2"a" int (1 + cos 2theta)"d"theta`
= `-2"a" [theta + 1/2 sin 2theta] + "C"`
= `-2"a" [1/2 cos^-1 x/"a" + 1/2 sqrt(1 - x^2/"a"^2)] + "C"`
= `-"a" [cos^-1(x/"a") + sqrt(1 - x^2/"a"^2)] + "C"`
APPEARS IN
RELATED QUESTIONS
Find `int dx/(5 - 8x - x^2)`
Find `int (cos theta)/((4 + sin^2 theta)(5 - 4 cos^2 theta)) d theta`
Evaluate `int (cos 2x + 2sin^2x)/(cos^2x) dx`
Evaluate : \[\int\limits_0^\frac{\pi}{4} \tan x dx\] .
Evaluate : \[\int\limits_0^\pi \frac{x \tan x}{\sec x + \tan x}dx\] .
Evaluate: `int ("sin 2x")/((1 + "sin x")(2 + "sin x")) "dx"`
Prove that `int_0^"a" "f(x)" "dx" = int_0^"a" "f"("a"-"x")"dx"` ,and hence evaluate `int_0^1 "x"^2(1 - "x")^"n""dx"`.
Evaluate the following:
`int x/(sqrt(x) + 1) "d"x` (Hint: Put `sqrt(x)` = z)
Evaluate the following:
`int x^(1/2)/(1 + x^(3/4)) "d"x` (Hint: Put `sqrt(x)` = z4)
Evaluate:
`∫ log_10 "x dx"`
`int (sin^8x - cos^8x)/(1 - 2sin^2x cos^2x) dx` is equal to
`int_0^oo (dx)/((x^2 + a^2)(x^2 + b^2))` is
Evaluate: `int_0^(pi/2) cosx/(( cos x/2 + sin x/2)^3) dx`
If `d/dx f(x) = 2x + 3/x` and f(1) = 1, then f(x) is ______.