Advertisements
Online Mock Tests
Chapters
2: Inverse Trigonometric Functions
3: Matrices
4: Determinants
5: Continuity And Differentiability
6: Application Of Derivatives
▶ 7: Integrals
8: Application Of Integrals
9: Differential Equations
10: Vector Algebra
11: Three Dimensional Geometry
12: Linear Programming
13: Probability
![NCERT Exemplar solutions for Mathematics [English] Class 12 chapter 7 - Integrals NCERT Exemplar solutions for Mathematics [English] Class 12 chapter 7 - Integrals - Shaalaa.com](/images/mathematics-english-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
Advertisements
Solutions for Chapter 7: Integrals
Below listed, you can find solutions for Chapter 7 of CBSE NCERT Exemplar for Mathematics [English] Class 12.
NCERT Exemplar solutions for Mathematics [English] Class 12 7 Integrals Solved Examples [Pages 146 - 163]
Short Answer
Integrate `((2"a")/sqrt(x) - "b"/x^2 + 3"c"root(3)(x^2))` w.r.t. x
Evaluate `int (3"a"x)/("b"^2 + "c"^2x^2) "d"x`
Verify the following using the concept of integration as an antiderivative
`int (x^3"d"x)/(x + 1) = x - x^2/2 + x^3/3 - log|x + 1| + "C"`
Evaluate `int sqrt((1 + x)/(1 - x)) "d"x`, x ≠1
Evaluate `int "dx"/sqrt((x - alpha)(beta - x)), beta > alpha`
Evaluate `int tan^8 x sec^4 x"d"x`
Find `int x^2/(x^4 + 3x^2 + 2) "d"x`
Find `int "dx"/(2sin^2x + 5cos^2x)`
Evaluate `int_(-1)^2 (7x - 5)"d"x` as a limit of sums
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Find `int x^2tan^-1x"d"x`
Find `int sqrt(10 - 4x + 4x^2) "d"x`
Long Answer
Evaluate `int (x^2"d"x)/(x^4 + x^2 - 2)`
Evaluate `int (x^2 + x)/(x^4 - 9) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
Objective Type Questions from 20 to 30
`int "e"^x (cosx - sinx)"d"x` is equal to ______.
`"e"^x cos x + "C"`
`"e"^x sin x + "C"`
`-"e"^x cos x + "C"`
`-"e"^x sin x + "C"`
`int "dx"/(sin^2x cos^2x)` is equal to ______.
tanx + cotx + C
x + cotx)2 + C
tanx – cotx + C
(tanx – cotx)2 + C
If `int (3"e"^x - 5"e"^-x)/(4"e"6x + 5"e"^-x)"d"x` = ax + b log |4ex + 5e –x| + C, then ______.
a = `(-1)/8`, b = `7/8`
a = `1/8`, b = `7/8`
a = `(-1)/8`, b = `(-7)/8`
a = `1/8`, b = `(-7)/8`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
`int_"a"^"b" "f"(x - "c")"d"x`
`int_"a"^"b" "f"(x + "c")"d"x`
`int_"a"^"b" "f"(x)"d"x`
`int_("a" - "c")^("b" - "c") "f"(x)"d"x`
If f and g are continuous functions in [0, 1] satisfying f(x) = f(a – x) and g(x) + g(a – x) = a, then `int_0^"a" "f"(x) * "g"(x)"d"x` is equal to ______.
`"a"/2`
`"a"/2 int_0^"a" "f"(x)"d"x`
`int_0^"a" "f"(x)"d"x`
`"a" int_0^"a" "f"(x)"d"x`
If x = `int_0^y "dt"/sqrt(1 + 9"t"^2)` and `("d"^2y)/("d"x^2)` = ay, then a equal to ______.
3
6
9
1
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
log 2
2 log 2
`1/2 log 2`
4 log 2
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`"a" - 1 + "e"/2`
`"a" + 1 - "e"/2`
`"a" - 1 - "e"/2`
`"a" + 1 + "e"/2`
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`8/pi`
`4/pi`
`2/pi`
`1/pi`
Fill in the blanks 29 to 32
`int (sin^6x)/(cos^8x) "d"x` = ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
NCERT Exemplar solutions for Mathematics [English] Class 12 7 Integrals Exercise [Pages 163 - 169]
Short Answer
Verify the following:
`int (x - 1)/(2x + 3) "d"x = x - log |(2x + 3)^2| + "C"`
Verify the following:
`int (2x + 3)/(x^2 + 3x) "d"x = log|x^2 + 3x| + "C"`
Evaluate the following:
`int ((x^2 + 2))/(x + 1) "d"x`
Evaluate the following:
`int ("e"^(6logx) - "e"^(5logx))/("e"^(4logx) - "e"^(3logx)) "d"x`
Evaluate the following:
`int ((1 + cosx))/(x + sinx) "d"x`
Evaluate the following:
`int ("d"x)/(1 + cos x)`
Evaluate the following:
`int tan^2x sec^4 x"d"x`
Evaluate the following:
`int (sinx + cosx)/sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int sqrt(1 + sinx)"d"x`
Evaluate the following:
`int x/(sqrt(x) + 1) "d"x` (Hint: Put `sqrt(x)` = z)
Evaluate the following:
`int sqrt(("a" + x)/("a" - x)) "d"x`
Evaluate the following:
`int x^(1/2)/(1 + x^(3/4)) "d"x` (Hint: Put `sqrt(x)` = z4)
Evaluate the following:
`int sqrt(1 + x^2)/x^4 "d"x`
Evaluate the following:
`int ("d"x)/sqrt(16 - 9x^2)`
Evaluate the following:
`int "dt"/sqrt(3"t" - 2"t"^2)`
Evaluate the following:
`int (3x - 1)/sqrt(x^2 + 9) "d"x`
Evaluate the following:
`int sqrt(5 - 2x + x^2) "d"x`
Evaluate the following:
`int x/(x^4 - 1) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int sqrt(2"a"x - x^2) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate the following:
`int (sin^6x + cos^6x)/(sin^2x cos^2x) "d"x`
Evaluate the following:
`int sqrt(x)/(sqrt("a"^3 - x^3)) "d"x`
Evaluate the following:
`int (cosx - cos2x)/(1 - cosx) "d"x`
Evaluate the following:
`int ("d"x)/(xsqrt(x^4 - 1))` (Hint: Put x2 = sec θ)
Evaluate the following as limit of sum:
`int _0^2 (x^2 + 3) "d"x`
Evaluate the following as limit of sum:
`int_0^2 "e"^x "d"x`
Evaluate the following:
`int_0^2 ("d"x)/("e"^x + "e"^-x)`
Evaluate the following:
`int_0^(pi/2) (tan x)/(1 + "m"^2 tan^2x) "d"x`
Evaluate the following:
`int_1^2 ("d"x)/sqrt((x - 1)(2 - x))`
Evaluate the following:
`int_0^1 (x"d"x)/sqrt(1 + x^2)`
Evaluate the following:
`int_0^pi x sin x cos^2x "d"x`
Evaluate the following:
`int_0^(1/2) ("d"x)/((1 + x^2)sqrt(1 - x^2))` (Hint: Let x = sin θ)
Long Answer
Evaluate the following:
`int (x^2"d"x)/(x^4 - x^2 - 12)`
Evaluate the following:
`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int (2x - 1)/((x - 1)(x + 2)(x - 3)) "d"x`
Evaluate the following:
`int "e"^(tan^-1x) ((1 + x + x^2)/(1 + x^2)) "d"x`
Evaluate the following:
`int sin^-1 sqrt(x/("a" + x)) "d"x` (Hint: Put x = a tan2θ)
Evaluate the following:
`int_(pi/3)^(pi/2) sqrt(1 + cosx)/(1 - cos x)^(5/2) "d"x`
Evaluate the following:
`int "e"^(-3x) cos^3x "d"x`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
Objective Type Questions from 48 to 63
`int (cos2x - cos 2theta)/(cosx - costheta) "d"x` is equal to ______.
2(sinx + xcosθ) + C
2(sinx – xcosθ) + C
2(sinx + 2xcosθ) + C
2(sinx – 2x cosθ) + C
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`sin("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "a"))/(sin(x - "b"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`sin("b" - "a")log|(sin("x" - "a"))/(sin(x - "b"))| + "C"`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
`(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
`x tan^-1 sqrt(x) - sqrt(x) + "C"`
`sqrt(x) - x tan^-1 sqrt(x) + "C"`
`sqrt(x) - (x + 1) tan^-1 sqrt(x) + "C"`
`int "e"^x ((1 - x)/(1 + x^2))^2 "d"x` is equal to ______.
`"e"^x/(1 + x^2) + "C"`
`(-"e"^x)/(1 + x^2) + "C"`
`"e"^x/(1 + x^2)^2 + "C"`
`(-"e"^x)/(1 + x^2)^2 + "C"`
`int x^9/(4x^2 + 1)^6 "d"x` is equal to ______.
`1/(5x)(4 + 1/x^2)^-5 + "C"`
`1/5(4 + 1/x^2)^-5 + "C"`
`1/(10x)(1 + 4)^-5 + "C"`
`1/10(1/x^2 + 4)^-5 + "C"`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
a = `(-1)/10`, b = `(-2)/5`
a = `1/10`, b = `- 2/5`
a = `(-1)/10`, b = `2/5`
a = `1/10`, b = `2/5`
`int x^3/(x + 1)` is equal to ______.
`x + x^2/2 + x^3/3 - log|1 - x| + "C"`
`x + x^2/2 - x^3/3 - log|1 - x| + "C"`
`x - x^2/2 - x^3/3 - log|1 + x| + "C"`
`x - x^2/2 + x^3/3 - log|1 + x| + "C"`
`int (x + sinx)/(1 + cosx) "d"x` is equal to ______.
log |1 + cosx| + C
log |x + sinx| + C
`x - tan x/2 + "C"`
`x.tan x/2 + "C"`
If `intx^3/sqrt(1 + x^2) "d"x = "a"(1 + x^2)^(3/2) + "b"sqrt(1 + x^2) + "C"`, then ______.
a = `1/3`, b = 1
a = `(-1)/3`, b = 1
a = `(-1)/3`, b = –1
a = `1/3`, b = –1
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
1
2
3
4
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
`2sqrt(2)`
`2(sqrt(2) + 1)`
2
`2(sqrt(2) - 1)`
Fill in the blanks 60 to 63.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int (x + 3)/(x + 4)^2 "e"^x "d"x` = ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int sinx/(3 + 4cos^2x) "d"x` = ______.
The value of `int_(-pi)^pi sin^3x cos^2x "d"x` is ______.
Solutions for 7: Integrals
![NCERT Exemplar solutions for Mathematics [English] Class 12 chapter 7 - Integrals NCERT Exemplar solutions for Mathematics [English] Class 12 chapter 7 - Integrals - Shaalaa.com](/images/mathematics-english-class-12_6:5f2b1b2038084cf381bfa42c826a928c.jpg)
NCERT Exemplar solutions for Mathematics [English] Class 12 chapter 7 - Integrals
Shaalaa.com has the CBSE Mathematics Mathematics [English] Class 12 CBSE solutions in a manner that help students grasp basic concepts better and faster. The detailed, step-by-step solutions will help you understand the concepts better and clarify any confusion. NCERT Exemplar solutions for Mathematics Mathematics [English] Class 12 CBSE 7 (Integrals) include all questions with answers and detailed explanations. This will clear students' doubts about questions and improve their application skills while preparing for board exams.
Further, we at Shaalaa.com provide such solutions so students can prepare for written exams. NCERT Exemplar textbook solutions can be a core help for self-study and provide excellent self-help guidance for students.
Concepts covered in Mathematics [English] Class 12 chapter 7 Integrals are Definite Integrals, Integrals of Some Particular Functions, Some Properties of Indefinite Integral, Integration Using Trigonometric Identities, Introduction of Integrals, Evaluation of Definite Integrals by Substitution, Properties of Definite Integrals, Methods of Integration: Integration by Substitution, Integration as an Inverse Process of Differentiation, Geometrical Interpretation of Indefinite Integrals, Methods of Integration: Integration Using Partial Fractions, Methods of Integration: Integration by Parts, Fundamental Theorem of Calculus, Indefinite Integral Problems, Comparison Between Differentiation and Integration, Indefinite Integral by Inspection, Definite Integral as the Limit of a Sum, Evaluation of Simple Integrals of the Following Types and Problems.
Using NCERT Exemplar Mathematics [English] Class 12 solutions Integrals exercise by students is an easy way to prepare for the exams, as they involve solutions arranged chapter-wise and also page-wise. The questions involved in NCERT Exemplar Solutions are essential questions that can be asked in the final exam. Maximum CBSE Mathematics [English] Class 12 students prefer NCERT Exemplar Textbook Solutions to score more in exams.
Get the free view of Chapter 7, Integrals Mathematics [English] Class 12 additional questions for Mathematics Mathematics [English] Class 12 CBSE, and you can use Shaalaa.com to keep it handy for your exam preparation.