Advertisements
Advertisements
Question
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
Options
`8/pi`
`4/pi`
`2/pi`
`1/pi`
Solution
`int_(-2)^2 |x cos pix| "d"x` is equal to `8/pi`.
Explanation:
Since I = `int_(-2)^2 |x cos pix| "d"x`
= `2 int_0^2 |x cos pix| "d"x`
= `2 {int_0^(1/2) |x cos pix|"d"x + int_(1/2)^(3/2) |x cos pix| "d"x + int_(3/2)^2 |x cos pix| "d"x}`
= `8/pi`
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
Evaluate `int_1^3 x^2*log x "d"x`
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Evaluate the following:
`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`
Evaluate: `int_(-1)^3 |x^3 - x|dx`
`int_0^1 1/(2x + 5) dx` = ______.
`int_0^1|3x - 1|dx` equals ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`