English

D∫-22|xcosπx|dx is equal to ______. - Mathematics

Advertisements
Advertisements

Question

`int_(-2)^2 |x cos pix| "d"x` is equal to ______.

Options

  • `8/pi`

  • `4/pi`

  • `2/pi`

  • `1/pi`

MCQ
Fill in the Blanks

Solution

`int_(-2)^2 |x cos pix| "d"x` is equal to `8/pi`.

Explanation:

Since I = `int_(-2)^2 |x cos pix| "d"x`

= `2 int_0^2 |x cos pix| "d"x`

= `2 {int_0^(1/2) |x cos pix|"d"x + int_(1/2)^(3/2) |x cos pix| "d"x + int_(3/2)^2 |x cos pix| "d"x}`

= `8/pi`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 162]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 28 | Page 162

RELATED QUESTIONS

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


Evaluate `int_1^3 x^2*log x  "d"x`


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


Evaluate the following:

`int_(-pi/4)^(pi/4) log|sinx + cosx|"d"x`


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_0^1 1/(2x + 5) dx` = ______.


`int_0^1|3x - 1|dx` equals ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×