English

Evaluate: ∫-11x17.cos4x dx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_-1^1 x^17.cos^4x  dx`

Options

  • `oo`

  • 1

  • – 1

  • 0

MCQ

Solution

0

Explanation:

Let f(x) = x17 cos4x

∴ f(– x) = (– x)17 cos4(– x)

= – x17 cos4x

= – f(x)

`\implies` f(x) is an odd function.

So by the property of definite integration.

`int_-a^a f(x)dx` = 0

If f(x) is an odd function.

`\implies int_-1^1 x^17 cos^4x  dx` = 0

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Official

RELATED QUESTIONS

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^pi x sin^2x dx` = ______ 


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


Evaluate `int_-1^1 |x^4 - x|dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×