Advertisements
Advertisements
Question
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
Solution
`int_a^b x^3 dx` = 0, then `(x^4/bb4)_a^b` = 0
⇒ `1/4` (b4 – a4) = 0
⇒ b4 – a4 = 0
⇒ (b2 – a2)(b2 + a2) = 0
⇒ b2 – a2 = 0 as a2 + b2 ≠ 0
⇒ b = ± a
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate : `intsec^nxtanxdx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_1^2 1/(2x + 3) dx` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_a^b f(x)dx` = ______.
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
`int_1^2 x logx dx`= ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`