Advertisements
Advertisements
Question
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Solution
Let I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
= `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cos x)) dx` ......(i)
Using `int_a^b f(x) dx = int_a^b f(a + b - x) dx`
I = `int_(pi/6)^(pi/3) sqrt(cos(pi/6 + pi/3 - x))/(sqrt(sin(pi/6 + pi/3 - x)) + sqrt(cos(pi/6 + pi/3 - x)))`
I = `int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx` ......(ii)
Adding (i) and (ii), we get
2I = `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cosx)) dx + int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx`
2I = `int_(pi/6)^(pi/3) dx`
= `[x]_(pi/6)^(pi/3)`
= `pi/3 - pi/6`
= `pi/6`
Hence, I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)) = pi/12`
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate : `intlogx/(1+logx)^2dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x`.
Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x)) "d"x` ......(i)
Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`, we get
I = `int_2^5 ("( )")/(sqrt(7 - x) + "( )") "d"x` ......(ii)
Adding equations (i) and (ii), we get
2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x)) "d"x + ( ) "d"x`
2I = `int_2^5 (("( )" + "( )")/("( )" + "( )")) "d"x`
2I = `square`
∴ I = `square`
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_0^{pi/2} cos^2x dx` = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_0^1|3x - 1|dx` equals ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate `int_-1^1 |x^4 - x|dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate:
`int_0^6 |x + 3|dx`