English

Evaluate: ∫π6π3dx1+tanx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`

Sum

Solution

Let I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`

= `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cos x)) dx`  ......(i)

Using `int_a^b f(x) dx = int_a^b f(a + b - x) dx`

I = `int_(pi/6)^(pi/3) sqrt(cos(pi/6 + pi/3 - x))/(sqrt(sin(pi/6 + pi/3 - x)) + sqrt(cos(pi/6 + pi/3 - x)))`

I = `int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx`  ......(ii)

Adding (i) and (ii), we get

2I = `int_(pi/6)^(pi/3) sqrt(cosx)/(sqrt(sinx) + sqrt(cosx)) dx + int_(pi/6)^(pi/3) sqrt(sinx)/(sqrt(cosx) + sqrt(sinx)) dx`

2I = `int_(pi/6)^(pi/3) dx`

= `[x]_(pi/6)^(pi/3)`

= `pi/3 - pi/6`

= `pi/6`

Hence, I = `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)) = pi/12`

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Sample

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


By completing the following activity, Evaluate `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`.

Solution: Let I = `int_2^5 (sqrt(x))/(sqrt(x) + sqrt(7 - x))  "d"x`     ......(i)

Using the property, `int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x)  "d"x`, we get

I = `int_2^5 ("(  )")/(sqrt(7 - x) + "(  )")  "d"x`   ......(ii)

Adding equations (i) and (ii), we get

2I = `int_2^5 (sqrt(x))/(sqrt(x) - sqrt(7 - x))  "d"x + (   )  "d"x`

2I = `int_2^5 (("(    )" + "(     )")/("(    )" + "(     )"))  "d"x`

2I = `square`

∴ I =  `square`


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


f(x) =  `{:{(x^3/k;       0 ≤ x ≤ 2), (0;     "otherwise"):}` is a p.d.f. of X. The value of k is ______


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_0^1|3x - 1|dx` equals ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate `int_-1^1 |x^4 - x|dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x))  dx`


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×