Advertisements
Advertisements
Questions
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
Evaluate:
`int_0^(pi/4) log (1+ tan x) dx`
Solution
Let I = `int_0^(pi/4) log (1 + tan x) dx` ....(1)
∴ I = `int_0^(pi/4) log [1 + tan (pi/4 - x)] dx` `...[int_0^a f(x) dx = int_0^a f(a - x) dx]`
⇒ I = `int_0^(pi/4) log {1 + (tan pi/4 - tan x)/(1 + tan pi/4 tan x)}dx`
⇒ I = `int_0^(pi/4) log {1 + (1 - tan x)/(1 + tan x)} dx`
⇒ I = `int_0^(pi/4) log 2/((1 + tan x)) dx`
⇒ I = `int_0^(pi/4) log 2 dx - int_0^(pi/4) log (1 + tan x) dx`
⇒ I = `int_0^(pi/4) log 2 dx - I` ...[From (1)]
⇒ 2I = `[x log 2]_0^(pi/4)`
⇒ 2I = `pi/4 log 2`
⇒ I = `pi/8 log 2`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^1 "e"^(2x) "d"x` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_0^1 x tan^-1x dx` = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^pi x sin^2x dx` = ______
Which of the following is true?
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`