हिंदी

By using the properties of the definite integral, evaluate the integral: ∫0π4log(1+tanx)dx - Mathematics

Advertisements
Advertisements

प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`

Evaluate:

`int_0^(pi/4) log (1+ tan x) dx`

योग

उत्तर

Let I = `int_0^(pi/4) log (1 + tan x) dx`            ....(1)

∴ I = `int_0^(pi/4) log [1 + tan (pi/4 - x)] dx`         `...[int_0^a f(x) dx = int_0^a f(a - x) dx]`

⇒ I = `int_0^(pi/4) log {1 + (tan  pi/4 - tan x)/(1 + tan  pi/4 tan x)}dx`

⇒ I = `int_0^(pi/4) log {1 + (1 - tan x)/(1 + tan x)} dx`

⇒ I = `int_0^(pi/4) log  2/((1 + tan x)) dx`

⇒ I = `int_0^(pi/4) log 2  dx - int_0^(pi/4) log (1 + tan x) dx`

⇒ I = `int_0^(pi/4) log 2  dx - I`        ...[From (1)]

⇒ 2I = `[x log 2]_0^(pi/4)`

⇒ 2I = `pi/4 log 2`

⇒ I = `pi/8 log 2`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.11 [पृष्ठ ३४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.11 | Q 8 | पृष्ठ ३४७

संबंधित प्रश्न

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_2^4 x/(x^2 + 1)  "d"x` = ______


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^{pi/2} cos^2x  dx` = ______ 


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^pi x sin^2x dx` = ______ 


Which of the following is true?


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


`int_0^(π/4) x. sec^2 x  dx` = ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate `int_-1^1 |x^4 - x|dx`.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×