Advertisements
Advertisements
प्रश्न
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
उत्तर
I = `int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x) dx` ...(i)
= `int_0^(π/2) sqrtsin (π/2 - x)/ (sqrtsin (π/2 - x) + sqrtcos (π/2 - x) dx`
by using `int_0^a f (x) dx = int_0^a f (a - x ) dx`
I = `int_0^(π/2) sqrt(cos x )/ (sqrtcos x + sqrtsin x) dx` ...(ii)
Adding equations (i) and (ii), we have
2I = `int_0^(π/2) (sqrtsin x + sqrtcos x )/ (sqrtsin x + sqrtcos x) dx`
2I = `int_0^(π/2) 1 dx = [x]_0^(π/2)`
I = `(1)/(2) [ (π)/(2) - 0 ]`
I = `(π)/(4)`
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_0^1 1/(2x + 5) dx` = ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x dx` is ______.
`int_1^2 x logx dx`= ______
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`