हिंदी

Using Properties of Definite Integrals, Evaluate Int_0^(π/2) Sqrt(Sin X )/ (Sqrtsin X + Sqrtcos X) - Mathematics

Advertisements
Advertisements

प्रश्न

Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`

योग

उत्तर

I = `int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)  dx`        ...(i)

  = `int_0^(π/2)  sqrtsin (π/2 - x)/ (sqrtsin (π/2 - x) + sqrtcos (π/2 - x)  dx`           

by using `int_0^a  f (x)  dx = int_0^a f (a - x ) dx`

I = `int_0^(π/2)  sqrt(cos x )/ (sqrtcos x + sqrtsin x)  dx`          ...(ii)

Adding equations (i) and (ii), we have

2I = `int_0^(π/2)  (sqrtsin x + sqrtcos x )/ (sqrtsin x + sqrtcos x) dx`

2I = `int_0^(π/2)  1 dx = [x]_0^(π/2)`

I = `(1)/(2) [ (π)/(2) - 0 ]`

I = `(π)/(4)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March)

APPEARS IN

संबंधित प्रश्न

If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_0^1 1/(2x + 5) dx` = ______.


The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


`int_1^2 x logx  dx`= ______


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×