Advertisements
Advertisements
प्रश्न
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
विकल्प
0
3
9
– 9
उत्तर
0
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
Evaluate `int_1^3 x^2*log x "d"x`
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/2} xsinx dx` = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_0^{pi/2} cos^2x dx` = ______
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^pi x sin^2x dx` = ______
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
`int_1^2 x logx dx`= ______
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate `int_1^2(x+3)/(x(x+2)) dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following definite intergral:
`int_1^3logx dx`