हिंदी

Evaluate ∫13x2⋅logx dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate `int_1^3 x^2*log x  "d"x`

योग

उत्तर

Let I = `int_1^3 x^2*log x  "d"x`

= `[log x int x^2  "d"x]_1^3 - int_1^3["d"/("d"x)(log x) intx^2  "d"x]"d"x`

= `[log x* x^3/3]_1^3 - int_1^3 1/x*x^3/3  "d"x`

= `[9log3 - log1*1/3] - 1/3 int_1^3 x^2  "d"x`

= `(9log 3 - 0) - 1/3 [x^3/3]_1^3`

= `9log3 - 1/3(27/3 - 1/3)`

= `9log3 - 1/3(26/3)`

∴ I = `9log 3 - 26/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.6: Definite Integration - Q.5

संबंधित प्रश्न

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Evaluate :  ∫ log (1 + x2) dx


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


`int_0^(pi/4) (sec^2x)/((1 + tanx)(2 + tanx))dx` equals ______.


What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


`int_1^2 x logx  dx`= ______


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate the following integral:

`int_-9^9 x^3/(4-x^2)dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×