हिंदी

If ππ∫02πcos2x dx=k∫0π2cos2x dx, then the value of k is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.

विकल्प

  • 4

  • 2

  • 1

  • 0

MCQ
रिक्त स्थान भरें

उत्तर

If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is 4.

Explanation:

`int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`

Taking LHS = `int_0^(2π) cos^2 x  dx`

= `2int_0^π cos^2 x  dx` ...[∵ cos2 x is an even function]

= `2 xx 2int_0^(π/2) cos^2 x  dx`  ...[∵ cos2 x is an even function]

= `4int_0^(π/2) cos^2 x  dx`  

On comparing both sides, we get

k = 4.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Outside Delhi Set 3

संबंधित प्रश्न

By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^a  sqrtx/(sqrtx + sqrt(a-x))   dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


`int_1^2 1/(2x + 3)  dx` = ______


State whether the following statement is True or False:

`int_(-5)^5 x/(x^2 + 7)  "d"x` = 10


Evaluate `int_0^1 x(1 - x)^5  "d"x`


`int_-9^9 x^3/(4 - x^2)` dx = ______


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^1 x tan^-1x  dx` = ______ 


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))  dx` is


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×