Advertisements
Advertisements
प्रश्न
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
विकल्प
4
2
1
0
उत्तर
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is 4.
Explanation:
`int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`
Taking LHS = `int_0^(2π) cos^2 x dx`
= `2int_0^π cos^2 x dx` ...[∵ cos2 x is an even function]
= `2 xx 2int_0^(π/2) cos^2 x dx` ...[∵ cos2 x is an even function]
= `4int_0^(π/2) cos^2 x dx`
On comparing both sides, we get
k = 4.
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
`int_1^2 1/(2x + 3) dx` = ______
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
Evaluate `int_0^1 x(1 - x)^5 "d"x`
`int_-9^9 x^3/(4 - x^2)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`