Advertisements
Advertisements
प्रश्न
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
उत्तर
Let f(x) = `log((2 - x)/(2 + x))`
We have, f(– x) = `log((2 + x)/(2 - x))`
= `-log((2 - x)/(2 + x))`
= – f(x)
So, f(x) is an odd function.
∴ `int_-1^1 log ((2 - x)/(2 + x))dx` = 0.
APPEARS IN
संबंधित प्रश्न
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
`int_0^1 x tan^-1x dx` = ______
`int_0^pi x sin^2x dx` = ______
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Solve.
`int_0^1e^(x^2)x^3dx`