Advertisements
Advertisements
Question
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Solution
Let f(x) = `log((2 - x)/(2 + x))`
We have, f(– x) = `log((2 + x)/(2 - x))`
= `-log((2 - x)/(2 + x))`
= – f(x)
So, f(x) is an odd function.
∴ `int_-1^1 log ((2 - x)/(2 + x))dx` = 0.
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_0^pi x sin^2x dx` = ______
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_4^9 1/sqrt(x)dx` = ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following definite intergral:
`int_1^3logx dx`