English

If ettdt∫01et1+tdt = a, then ettdt∫01et(1+t)2dt is equal to ______ - Mathematics

Advertisements
Advertisements

Question

If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.

Options

  • `"a" - 1 + "e"/2`

  • `"a" + 1 - "e"/2`

  • `"a" - 1 - "e"/2`

  • `"a" + 1 + "e"/2`

MCQ
Fill in the Blanks

Solution

If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to `"a" + 1 - "e"/2`.

Explanation:

Since I = `int_0^1 "e"^"t"/(1 + "t") "dt"`

= `|1/(1 + "t") "e"^"t"|_0^1 + int_0^1 "e"^"t"/(1 + "t")^2 "dt"` = a  ...(Given)

Therefore, `int_0^1 "e"^"t"/(1 + "t")^2 = "a" - "e"/2 + 1`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Solved Examples [Page 162]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Solved Examples | Q 27 | Page 162

RELATED QUESTIONS

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_0^{pi/2} cos^2x  dx` = ______ 


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int (dx)/(e^x + e^(-x))` is equal to ______.


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate:

`int_0^1 |2x + 1|dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following integral:

`int_0^1x(1 - x)^5dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×