Advertisements
Advertisements
Question
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
Options
`"a" - 1 + "e"/2`
`"a" + 1 - "e"/2`
`"a" - 1 - "e"/2`
`"a" + 1 + "e"/2`
Solution
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to `"a" + 1 - "e"/2`.
Explanation:
Since I = `int_0^1 "e"^"t"/(1 + "t") "dt"`
= `|1/(1 + "t") "e"^"t"|_0^1 + int_0^1 "e"^"t"/(1 + "t")^2 "dt"` = a ...(Given)
Therefore, `int_0^1 "e"^"t"/(1 + "t")^2 = "a" - "e"/2 + 1`.
APPEARS IN
RELATED QUESTIONS
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_0^{pi/2} cos^2x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate:
`int_0^1 |2x + 1|dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`