English

Evaluate: π∫0π211+(tanx)23dx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`

Sum

Solution

Let I = `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`  ...(i)

I = `int_0^(π/2) 1/(1 + [tan(π/2 - x)]^(2/3)) dx`  ...[Using property `int_0^a f(x)dx = int_0^a f(a - x)dx`]

I = `int_0^(π/2) 1/(1 + (cot x)^(2/3)) dx`

I = `int_0^(π/2) ((tanx)^(2/3))/((tanx)^(2/3) + 1) dx`

I = `int_0^(pi/2) ((tanx)^(2/3) + 1 - 1)/((tanx)^(2/3) + 1) dx`

I = `int_0^(π/2) (1 + (tanx)^(3/2))/(1 + (tanx)^(3/2)) dx - int_0^(π/2) 1/(1 + (tanx)^(3/2)) dx`

I = `int_0^(π/2) 1.dx - I`  ...[From equation (i)]

2I = `int_0^(π/2) 1.dx`

2I = `[x]_0^(π/2)`

2I = `π/2`

I = `π/4`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Delhi Set 2

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


Evaluate `int_1^3 x^2*log x  "d"x`


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^1 (1 - x)^5`dx = ______.


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


`int_0^1 x tan^-1x  dx` = ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^pi x sin^2x dx` = ______ 


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


`int_a^b f(x)dx` = ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×