Advertisements
Advertisements
Question
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Solution
Let I = `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx` ...(i)
I = `int_0^(π/2) 1/(1 + [tan(π/2 - x)]^(2/3)) dx` ...[Using property `int_0^a f(x)dx = int_0^a f(a - x)dx`]
I = `int_0^(π/2) 1/(1 + (cot x)^(2/3)) dx`
I = `int_0^(π/2) ((tanx)^(2/3))/((tanx)^(2/3) + 1) dx`
I = `int_0^(pi/2) ((tanx)^(2/3) + 1 - 1)/((tanx)^(2/3) + 1) dx`
I = `int_0^(π/2) (1 + (tanx)^(3/2))/(1 + (tanx)^(3/2)) dx - int_0^(π/2) 1/(1 + (tanx)^(3/2)) dx`
I = `int_0^(π/2) 1.dx - I` ...[From equation (i)]
2I = `int_0^(π/2) 1.dx`
2I = `[x]_0^(π/2)`
2I = `π/2`
I = `π/4`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (cos^5 xdx)/(sin^5 x + cos^5 x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Choose the correct alternative:
`int_(-9)^9 x^3/(4 - x^2) "d"x` =
`int_(-7)^7 x^3/(x^2 + 7) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_1^3 x^2*log x "d"x`
`int (cos x + x sin x)/(x(x + cos x))`dx = ?
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^1 (1 - x)^5`dx = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi x sin^2x dx` = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
`int_a^b f(x)dx` = ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/(9x^2 - 1) dx`