Advertisements
Advertisements
Question
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Solution
Given, `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Let I = `int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"` ............(i)
Then using property:
`int_"a"^"b" "f"("x") "dx" = int_"a"^"b" "f"("a" + "b" - "x") "dx"`
I = `int_2^8 (sqrt(10 - (2 + 8 - "x")))/(sqrt(2 + 8 - "x") + sqrt(10 - (2 + 8 - "x"))) "dx"`
= `int_2^8 (sqrt"x")/(sqrt(10 - "x") + sqrt"x") "dx"` ...........(ii)
Adding equation (i) and (ii), we get
2I = `int_2^8 (sqrt(10 - "x") + sqrt"x")/(sqrt"x" + sqrt(10 - "x")) "dx"`
⇒ 2I = `int_2^8 1. "dx"`
⇒ 2I = `["x"]_2^8`
⇒ 2I = 8 − 2
⇒ 2I = 6
∴ I = 3
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find `dy/dx, if y = cos^-1 ( sin 5x)`
`int_0^2 e^x dx` = ______.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^{pi/2} cos^2x dx` = ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^1 1/(2x + 5) dx` = ______.
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Solve.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite intergral:
`int_1^3logx dx`