Advertisements
Advertisements
Question
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Solution
R = 720x - 3x2
`(dR)/(dx)` = 720 - 6x
Total revenue R is increasing if `(dR)/(dx)` > 0.
i.e; if 720 - 6x > 0
if 720 > 6x
i.e; if 120 > x
∴ R is increasing for 120 > x.
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(-1)^1 log ((2 - x)/(2 + x)) "dx" = ?`
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_0^1 "e"^(5logx) "d"x` = ______.
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
`int_0^1|3x - 1|dx` equals ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`