Advertisements
Advertisements
Question
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Solution
We have I = `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x` .....(1)
= `int_2^8 sqrt(10 - (10 - x))/(sqrt(10 - x) + sqrt(10 - (10 - x)) "d"x` .....By (P3)
⇒ I = `int_2^8 sqrt(x)/(sqrt(10 - x) + sqrt(x)) "d"x` ....(2)
Adding (1) and (2), we get
2I = `int_2^8 1"d"x = 8 - ` = 6
Hence I = 3
APPEARS IN
RELATED QUESTIONS
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx` and hence evaluate `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^1 "e"^(2x) "d"x` = ______
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^9 1/(1 + sqrtx)` dx = ______
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate:
`int_0^6 |x + 3|dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`