Advertisements
Advertisements
Question
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Solution
We have I = `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
= `int_0^(pi/4) sqrt((sinx + cosx)^2) "d"x`
= `int_0^(pi/4) (sinx + cosx) "d"x`
= `(-cosx + sinx)_0^(pi/4)`
I = 1.
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_(-5)^5 | x + 2| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate `int_0^1 x(1 - x)^5 "d"x`
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2} xsinx dx` = ______
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
`int_0^1 1/(2x + 5) dx` = ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`