English

Evaluate: ∫13xx+4-xdx - Mathematics

Advertisements
Advertisements

Question

Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`

Sum

Solution

Let I = `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x)`  ...(i)

Using property `int_a^b f(x)dx = int_a^b f(a + b - x)dx`, we get

I = `int_1^3 sqrt(4 - x)/(sqrt(4 - x) + sqrt(x))dx`  ...(ii)

On adding equations (i) and (ii}, we get

2I = `int_1^3 (sqrt(x) + sqrt(4 - x))/(sqrt(x) + sqrt(4 - x))dx`

= `int_1^3 1dx`

= `[x]_1^3`

= 3 – 1 = 2

∴ I = 1

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Term 2 - Delhi Set 3

RELATED QUESTIONS

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate = `int (tan x)/(sec x + tan x)` . dx


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


`int_0^1 "e"^(2x) "d"x` = ______


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/2} xsinx dx` = ______


`int_0^1 (1 - x)^5`dx = ______.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^pi x sin^2x dx` = ______ 


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_(-1)^3 |x^3 - x|dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


`int_0^1|3x - 1|dx` equals ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×