Advertisements
Advertisements
Question
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
Solution
Let I = `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x)` ...(i)
Using property `int_a^b f(x)dx = int_a^b f(a + b - x)dx`, we get
I = `int_1^3 sqrt(4 - x)/(sqrt(4 - x) + sqrt(x))dx` ...(ii)
On adding equations (i) and (ii}, we get
2I = `int_1^3 (sqrt(x) + sqrt(4 - x))/(sqrt(x) + sqrt(4 - x))dx`
= `int_1^3 1dx`
= `[x]_1^3`
= 3 – 1 = 2
∴ I = 1
APPEARS IN
RELATED QUESTIONS
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
`int_0^1 "e"^(2x) "d"x` = ______
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
`int_0^{pi/2} xsinx dx` = ______
`int_0^1 (1 - x)^5`dx = ______.
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^pi x sin^2x dx` = ______
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_(-1)^3 |x^3 - x|dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
`int_0^1|3x - 1|dx` equals ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
If `int_0^(2π) cos^2 x dx = k int_0^(π/2) cos^2 x dx`, then the value of k is ______.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve.
`int_0^1e^(x^2)x^3dx`