Advertisements
Advertisements
Question
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Solution
I = `int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x) dx` ...(i)
= `int_0^(π/2) sqrtsin (π/2 - x)/ (sqrtsin (π/2 - x) + sqrtcos (π/2 - x) dx`
by using `int_0^a f (x) dx = int_0^a f (a - x ) dx`
I = `int_0^(π/2) sqrt(cos x )/ (sqrtcos x + sqrtsin x) dx` ...(ii)
Adding equations (i) and (ii), we have
2I = `int_0^(π/2) (sqrtsin x + sqrtcos x )/ (sqrtsin x + sqrtcos x) dx`
2I = `int_0^(π/2) 1 dx = [x]_0^(π/2)`
I = `(1)/(2) [ (π)/(2) - 0 ]`
I = `(π)/(4)`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^1 "e"^(2x) "d"x` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
Evaluate `int_0^(π//4) log (1 + tanx)dx`.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following definite integral:
`int_1^3 log x dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`