English

Using Properties of Definite Integrals, Evaluate Int_0^(π/2) Sqrt(Sin X )/ (Sqrtsin X + Sqrtcos X) - Mathematics

Advertisements
Advertisements

Question

Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`

Sum

Solution

I = `int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)  dx`        ...(i)

  = `int_0^(π/2)  sqrtsin (π/2 - x)/ (sqrtsin (π/2 - x) + sqrtcos (π/2 - x)  dx`           

by using `int_0^a  f (x)  dx = int_0^a f (a - x ) dx`

I = `int_0^(π/2)  sqrt(cos x )/ (sqrtcos x + sqrtsin x)  dx`          ...(ii)

Adding equations (i) and (ii), we have

2I = `int_0^(π/2)  (sqrtsin x + sqrtcos x )/ (sqrtsin x + sqrtcos x) dx`

2I = `int_0^(π/2)  1 dx = [x]_0^(π/2)`

I = `(1)/(2) [ (π)/(2) - 0 ]`

I = `(π)/(4)`

shaalaa.com
  Is there an error in this question or solution?
2013-2014 (March)

APPEARS IN

RELATED QUESTIONS

By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^1 "e"^(2x) "d"x` = ______


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`


If `intxf(x)dx = (f(x))/2` then f(x) = ex.


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following definite integral:

`int_1^3 log x  dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×