Advertisements
Advertisements
Question
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Solution
`int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx = int_(-π//4)^(π//4) (2 cos^2 x - 1)/(2 cos^2 x)dx`
= `1/2 . 2 int_0^(π//4) (2 - sec^2 x)dx` ...[even function]
= `1/2 . 2[2x - tan x]_0^(π//4)`
= `π/2 - 1`
APPEARS IN
RELATED QUESTIONS
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^a sqrtx/(sqrtx + sqrt(a-x)) dx`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
`int_0^1|3x - 1|dx` equals ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Solve the following.
`int_1^3 x^2 logx dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`