English

Evaluate ∫2−2 x2/(1+5x) dx - Mathematics

Advertisements
Advertisements

Question

 
 

Evaluate `int_(-2)^2x^2/(1+5^x)dx`

 
 

Solution

 

 Consider the given integral

`I= int_(-2)^2x^2/(1+5^x)dx`

Let us use the property,

`int_a^bf(x)dx=int_b^af(a+b-x)dx`

`:.I = int_(-2)^2(-x)^2/(1+5^(-x))dx`

 `=int_(-2)^2(5^(x)x^2)/(1+5^x)dx `

 Adding equations (1) and (2), we have,

`2I=int_(-2)^2(1+5^x)/(1+5^x)xx x^2dx`

`=int_(-2)^2x^2dx`

`=[x^3/3]^2`

`=1/3[8-(8)]`

`=1/3[16]`

`=>I= 8/3`

 

 
shaalaa.com
  Is there an error in this question or solution?
2015-2016 (March) All India Set 1 N

RELATED QUESTIONS

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate`int (1)/(x(3+log x))dx` 


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


`int_1^2 1/(2x + 3)  dx` = ______


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


Evaluate: `int_0^π 1/(5 + 4 cos x)dx`


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_0^1x(1-x)^5dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×