Advertisements
Advertisements
प्रश्न
Evaluate `int_(-2)^2x^2/(1+5^x)dx`
उत्तर
Consider the given integral
`I= int_(-2)^2x^2/(1+5^x)dx`
Let us use the property,
`int_a^bf(x)dx=int_b^af(a+b-x)dx`
`:.I = int_(-2)^2(-x)^2/(1+5^(-x))dx`
`=int_(-2)^2(5^(x)x^2)/(1+5^x)dx `
Adding equations (1) and (2), we have,
`2I=int_(-2)^2(1+5^x)/(1+5^x)xx x^2dx`
`=int_(-2)^2x^2dx`
`=[x^3/3]^2`
`=1/3[8-(8)]`
`=1/3[16]`
`=>I= 8/3`
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2} xsinx dx` = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
f(x) = `{:{(x^3/k; 0 ≤ x ≤ 2), (0; "otherwise"):}` is a p.d.f. of X. The value of k is ______
`int_0^1 x tan^-1x dx` = ______
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
Let a be a positive real number such that `int_0^ae^(x-[x])dx` = 10e – 9 where [x] is the greatest integer less than or equal to x. Then, a is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integrals:
`int_-9^9 x^3/(4 - x^3 ) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following integral:
`int_0^1x(1 - x)^5dx`