Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
उत्तर
`int_0^4 abs (x - 1) dx`
Define,
`abs(x - 1) = {(-(x-1), if x-1<0, or x < 1),(x-1, if x - 1>=0, or x>=1):}`
`int_0^1 abs (x - 1) dx + int_1^4 abs(x - 1) dx`
`int_0^1 - (x - 1) "dx" + int_1^4 (x - 1) dx`
`= - [x^2/2 - x]_0^1 + [x^2/2 - x]_1^4`
`= [(1/2 - 1) - 0] + (16/2 - 4) - (1/2 - 1)`
`= 1/2 + 4 + 1/2`
`= (1 + 8 + 1)/2`
= 5
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha3x^2dx=8` then the value of α is :
(a) 0
(b) -2
(c) 2
(d) ±2
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) cos^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
Which of the following is true?
If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int (dx)/(e^x + e^(-x))` is equal to ______.
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.
Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.
Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.
Solve the following.
`int_1^3 x^2 logx dx`
`int_1^2 x logx dx`= ______
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`