Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
Solution
`int_0^4 abs (x - 1) dx`
Define,
`abs(x - 1) = {(-(x-1), if x-1<0, or x < 1),(x-1, if x - 1>=0, or x>=1):}`
`int_0^1 abs (x - 1) dx + int_1^4 abs(x - 1) dx`
`int_0^1 - (x - 1) "dx" + int_1^4 (x - 1) dx`
`= - [x^2/2 - x]_0^1 + [x^2/2 - x]_1^4`
`= [(1/2 - 1) - 0] + (16/2 - 4) - (1/2 - 1)`
`= 1/2 + 4 + 1/2`
`= (1 + 8 + 1)/2`
= 5
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate : `intlogx/(1+logx)^2dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^2 xsqrt(2 -x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx` if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^2 e^x dx` = ______.
`int_"a"^"b" "f"(x) "d"x` = ______
`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^1 x tan^-1x dx` = ______
The value of `int_1^3 dx/(x(1 + x^2))` is ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Which of the following is true?
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
`int_a^b f(x)dx` = ______.
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logx dx`