English

By using the properties of the definite integral, evaluate the integral: ∫01x(1-x)ndx - Mathematics

Advertisements
Advertisements

Question

By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`

Sum

Solution

`int_0^1  (1 - x) [1 - (1 - x)^n] dx        ...[because int_0^a  f(x) dx = int_0^a  f(a - x)  dx]`

Hence,  `I = int_0^1 (1 - x).x^n  dx`

`I = int_0^1  (x^n - x^(n + 1))  dx`

`= ([x^(n + 1)]_0^1)/(n + 1) - ([n^(n + 2)]_0^1)/(n + 2)`

`= 1/(n + 2) - 1/(n + 2)`

`= (n + 2 - n - 1)/((n + 1)(n + 2))`

`= 1/((n + 1)(n + 2))`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.11 [Page 347]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.11 | Q 7 | Page 347

RELATED QUESTIONS

Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .


Evaluate`int (1)/(x(3+log x))dx` 


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Using properties of definite integrals, evaluate 

`int_0^(π/2)  sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_(-2)^2 |x cos pix| "d"x` is equal to ______.


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_0^1 1/(2x + 5) dx` = ______.


`int_a^b f(x)dx` = ______.


`int_4^9 1/sqrt(x)dx` = ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.


`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


`int_0^(π/4) x. sec^2 x  dx` = ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×