Advertisements
Advertisements
Question
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
Solution
`int_0^1 (1 - x) [1 - (1 - x)^n] dx ...[because int_0^a f(x) dx = int_0^a f(a - x) dx]`
Hence, `I = int_0^1 (1 - x).x^n dx`
`I = int_0^1 (x^n - x^(n + 1)) dx`
`= ([x^(n + 1)]_0^1)/(n + 1) - ([n^(n + 2)]_0^1)/(n + 2)`
`= 1/(n + 2) - 1/(n + 2)`
`= (n + 2 - n - 1)/((n + 1)(n + 2))`
`= 1/((n + 1)(n + 2))`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate`int (1)/(x(3+log x))dx`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Using properties of definite integrals, evaluate
`int_0^(π/2) sqrt(sin x )/ (sqrtsin x + sqrtcos x)dx`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
`int_0^1 1/(2x + 5) dx` = ______.
`int_a^b f(x)dx` = ______.
`int_4^9 1/sqrt(x)dx` = ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
The value of the integral `int_0^1 x cot^-1(1 - x^2 + x^4)dx` is ______.
`int_(π/3)^(π/2) x sin(π[x] - x)dx` is equal to ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.
If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Evaluate:
`int_0^1 |2x + 1|dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Evaluate:
`int_0^sqrt(2)[x^2]dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`