Advertisements
Advertisements
Question
Evaluate : `int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
Solution
`int e^x[(sqrt(1-x^2)sin^-1x+1)/(sqrt(1-x^2))]dx`
`=int e^x[sin^-1x +1/ (sqrt(1-x^2))]dx`
We know that `inte^x[f(x)+f'(x)]dx=e^x.f(x)+c`
`=e^x.sin^-1x+c`
APPEARS IN
RELATED QUESTIONS
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Evaluate : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_"a"^"b" "f"(x) "d"x` = ______
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_2^3 x/(x^2 - 1)` dx = ______
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_0^1 "e"^(5logx) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
If f(x) = `(2 - xcosx)/(2 + xcosx)` and g(x) = logex, (x > 0) then the value of the integral `int_((-π)/4)^(π/4) "g"("f"(x))"d"x` is ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Solve the following.
`int_1^3 x^2 logx dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_0^1x(1-x)^5dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`