Advertisements
Advertisements
Question
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Solution
Let `I=∫_4^9 1/sqrtxdx`
`=∫_4^9 x^-(1/2)dx`
`=[x^(1/2)/(1/2)]_4^9=2[sqrtx]_4^9`
`=2(sqrt9-sqrt4)`
`=2(3-2)`
`therefore I=2`
APPEARS IN
RELATED QUESTIONS
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
Prove that `int_0^af(x)dx=int_0^af(a-x) dx`
hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`
Evaluate `int e^x [(cosx - sin x)/sin^2 x]dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
`int_0^2 e^x dx` = ______.
`int_"a"^"b" "f"(x) "d"x` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______
`int_-9^9 x^3/(4 - x^2)` dx = ______
If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.
`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int (dx)/(e^x + e^(-x))` is equal to ______.
If `intxf(x)dx = (f(x))/2` then f(x) = ex.
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
If `int_(-a)^a(|x| + |x - 2|)dx` = 22, (a > 2) and [x] denotes the greatest integer ≤ x, then `int_a^(-a)(x + [x])dx` is equal to ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
Evaluate: `int_0^π 1/(5 + 4 cos x)dx`
With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.
`int_0^(π/4) x. sec^2 x dx` = ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate `int_-1^1 |x^4 - x|dx`.
Solve the following.
`int_1^3 x^2 logx dx`
`int_1^2 x logx dx`= ______
Evaluate `int_0^3root3(x+4)/(root3(x+4)+root3(7-x)) dx`
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`
Evaluate:
`int_0^6 |x + 3|dx`