English

Prove that ∫0af(x)dx=∫0af(a-x) dx hence evaluate ∫0(π/2)sinx/(sinx+cosx) dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Prove that `int_0^af(x)dx=int_0^af(a-x) dx`

hence evaluate `int_0^(pi/2)sinx/(sinx+cosx) dx`

Solution

Let I = `int_0^af(x)dx`

Put x = a – t
∴ dx = – dt
When x = 0, t = a - 0 = a
When x = a, t = a - a = 0

`I=int_0^af(x)dx=int_a^0f(a-t)(-dt)`

`=-int_a^0f(a-t)dt`         ......[`∵int_a^bf(x)dx=-int_b^af(x)dx`]

`=int_0^af(a-x)dx`         ......[`∵int_a^bf(x)dx=-int_b^af(t)dx`]

`therefore int_0^af(x)dx=int_0^af(a-x)dx`

Let I=`int_0^(pi/2)sinx/(sinx+cosx)`            ........(i)

`I=int_0^(pi/2)sin(pi/2-x)/(sin(pi/2-x)+cos(pi/2-x))`       ......[`∵int_0^af(x)dx=-int_0^af(a-x)dx`]

`=int_0^(pi/2)cosx/(cosx+sinx)dx`         ............(ii)

Adding (i) and (ii), we get

`2I=int_0^(pi/2)(sinx+cosx)/(sinx+cosx)dx`

`=int_0^(pi/2)1 dx`

`=[x]_0^(pi/2)`

`=pi/2-0`

`2I=pi/2`

`I=pi/4`

`therefore int_0^(pi/2)sinx/(sinx+cosx)dx=pi/4`

shaalaa.com
  Is there an error in this question or solution?
2015-2016 (July)

APPEARS IN

RELATED QUESTIONS

Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  (cos^5  xdx)/(sin^5 x + cos^5 x)`


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Evaluate :  ∫ log (1 + x2) dx


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2} cos^2x  dx` = ______ 


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_-1^1x^2/(1+x^2)  dx=` ______.


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


`int_a^b f(x)dx` = ______.


`int_a^b f(x)dx = int_a^b f(x - a - b)dx`.


`int_0^1|3x - 1|dx` equals ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


`int_-1^1 (17x^5 - x^4 + 29x^3 - 31x + 1)/(x^2 + 1) dx` is equal to ______.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.


Evaluate : `int_-1^1 log ((2 - x)/(2 + x))dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Solve the following.

`int_1^3 x^2 logx  dx`


`int_1^2 x logx  dx`= ______


Evaluate the following integral:

`int_-9^9 x^3 / (4 - x^2) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve.

`int_0^1e^(x^2)x^3dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×