English

For any integer n, the value of ππ∫-ππecos2xsin3(2n+1)x dx is ______. - Mathematics

Advertisements
Advertisements

Question

For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.

Options

  • –1

  • 0

  • 1

  • 2

MCQ
Fill in the Blanks

Solution

For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is 0.

Explanation:

f(x) = `e^(cos^2x) sin^3 (2n + 1)x`

f(–x) = `e^(cos^2(-x)) sin^3 (2n + 1)(-x)`

f(–x) = `-e^(cos^2x) sin^3 (2n + 1)x`

∵ f(–x) = –f(x)

So, `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` = 0

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Board Sample Paper

RELATED QUESTIONS

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(2x) cos^5 xdx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^{pi/4} (sin2x)/(sin^4x + cos^4x)dx` = ____________


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


`int_0^1|3x - 1|dx` equals ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


If `int_0^(2π) cos^2 x  dx = k int_0^(π/2) cos^2 x  dx`, then the value of k is ______.


Evaluate `int_1^2(x+3)/(x(x+2))  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×