मराठी

For any integer n, the value of ππ∫-ππecos2xsin3(2n+1)x dx is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is ______.

पर्याय

  • –1

  • 0

  • 1

  • 2

MCQ
रिकाम्या जागा भरा

उत्तर

For any integer n, the value of `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` is 0.

Explanation:

f(x) = `e^(cos^2x) sin^3 (2n + 1)x`

f(–x) = `e^(cos^2(-x)) sin^3 (2n + 1)(-x)`

f(–x) = `-e^(cos^2x) sin^3 (2n + 1)x`

∵ f(–x) = –f(x)

So, `int_-π^π e^(cos^2x) sin^3 (2n + 1)x  dx` = 0

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2023-2024 (March) Board Sample Paper

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Evaluate  : `int "x"^2/("x"^4 + 5"x"^2 + 6) "dx"`


`int_0^2 e^x dx` = ______.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


The value of `int_-3^3 ("a"x^5 + "b"x^3 + "c"x + "k")"dx"`, where a, b, c, k are constants, depends only on ______.


`int_0^{pi/2}((3sqrtsecx)/(3sqrtsecx + 3sqrt(cosecx)))dx` = ______ 


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


If `int_0^"a" sqrt("a - x"/x) "dx" = "K"/2`, then K = ______.


`int_0^9 1/(1 + sqrtx)` dx = ______ 


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


The integral `int_0^2||x - 1| -x|dx` is equal to ______.


Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following limit :

`lim_("x"->3)[sqrt("x"+6)/"x"]`


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Evaluate:

`int_0^1 |2x + 1|dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following definite integral:

`int_-2^3(1)/(x + 5)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×