Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
उत्तर
Let I = `int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2`
Dividing the numerator and denominator by cos4x, we have
I = `int_0^(pi/2) (sec^4x)/(("a"^2 cos^2x)/(cos^2x) + ("b"^2 sin^2x)/cos^2x)^2 "d"x`
= `int_0^(pi/2) (sec^2x * sec^2x)/("a"^2 + "b"^2 tan^2 x)^2 "d"x`
= `int_0^(pi/2) ((1 + tan^2x) sec^2x)/("a"^2 + "b"^2 tan^2 x)^2 "d"x`
Put tan x = t
⇒ sec2x dx = dt
Changing the limits, we get
When x = 0
t = tan 0 = 0
When x = `pi/2`
t = `tan pi/2 = oo`
∴ I = `int_0^oo (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2 "dt"`
Put t2 = u only for the purpose of partial fraction
∴ `(1 +"u")/("a"^2 + "b"^2"u")^2 = "A"/(("a"^2 + "b"^2"u")) + "B"/("a"^2 + "b"^2"u")^2`
1 + u = A(a2 + b2u) + B
Comparing the coefficients of like terms, we get
a2A + B = 1 and b2A = 1
⇒ A = `1/"b"^2`
Now `"a"^2 * 1/"b"^2 + "B"` = 1
⇒ B = `1 - "a"^2/"b"^2`
= `("b"^2 - "a"^2)/"b"^2`
∴ I = `int_0^oo (1 + "t"^2)/("a"^2 + "b"^2"t"^2)^2`
= `1/"b"^2 int_0^oo "dt"/("a"^2 + "b"^2"t"^2) + ("b"^2 - "a"^2)/"b"^2 int_0^oo "dt"/("a"^2 + "b"^2"t"^2)^2`
= `1/"b"^2 int_0^oo "dt"/("b"^2("a"^2/"b"^2 + "t"^2)) + ("b"^2 - "a"^2)/"b"^2 int_0^oo "dt"/("a"^2 + "b"^2"t"^2)^2`
= `1/"ab"^3 [tan^-1 "t"/("a"/"b")]_0^oo + ("b"^2 - "a"^2)/"b"^2 (pi/4 * 1/("a"^3"b"))`
= `1/"ab"^3 [tan^-1 oo - tan 0] + ("b"^2 - "a"^2)/"b"^2 (pi/(4"a"^3"b"))`
= `1/"ab"^3 * pi/2 + pi/4 * ("b"^2 - "a"^2)/("a"^2"b"^3)`
= `pi/(2"ab"^3) + pi/4 * ("b"^2 - "a"^2)/("a"^3"b"^3)`
= `pi [(2"a"^2 + "b"^2 - "a"^2)/(4"a"^3"b"^3)]`
= `pi/4 (("a"^2 + "b"^2)/("a"^3"b"^3))`
APPEARS IN
संबंधित प्रश्न
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^(2x) cos^5 xdx`
Evaluate : \[\int(3x - 2) \sqrt{x^2 + x + 1}dx\] .
Evaluate : `int _0^(pi/2) "sin"^ 2 "x" "dx"`
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
Evaluate : ∫ log (1 + x2) dx
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
State whether the following statement is True or False:
`int_(-5)^5 x/(x^2 + 7) "d"x` = 10
The c.d.f, F(x) associated with p.d.f. f(x) = 3(1- 2x2). If 0 < x < 1 is k`(x - (2x^3)/"k")`, then value of k is ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_0^{1/sqrt2} (sin^-1x)/(1 - x^2)^{3/2} dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_(-2)^2 |x cos pix| "d"x` is equal to ______.
`int_(-"a")^"a" "f"(x) "d"x` = 0 if f is an ______ function.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
The value of `int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2)) dx` is
Evaluate: `int_((-π)/2)^(π/2) (sin|x| + cos|x|)dx`
If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.
The value of the integral `int_0^sqrt(2)([sqrt(2 - x^2)] + 2x)dx` (where [.] denotes greatest integer function) is ______.
Let `int_0^∞ (t^4dt)/(1 + t^2)^6 = (3π)/(64k)` then k is equal to ______.
What is `int_0^(π/2)` sin 2x ℓ n (cot x) dx equal to ?
Evaluate the following limit :
`lim_("x"->3)[sqrt("x"+6)/"x"]`
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Evaluate the following integral:
`int_-9^9 x^3 / (4 - x^2) dx`
Solve.
`int_0^1e^(x^2)x^3dx`