Advertisements
Advertisements
प्रश्न
Evaluate : `int "e"^(3"x")/("e"^(3"x") + 1)` dx
उत्तर
Let I = `"e"^(3"x")/("e"^(3"x") + 1)` dx
Put e3x + 1 = t
Diff. both the sides w.r.t. x
3 e3x = dt ⇒ e3x dx = `"dt"/3`
`therefore "I" = 1/3 int "dt"/"t"`
`= 1/3 "log" |"t"| + "c"`
`= 1/3 "log" |e^(3x) + 1| + "C"`
APPEARS IN
संबंधित प्रश्न
Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`
Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`
(A) 1
(B) 2
(C) –1
(D) –2
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
`∫_4^9 1/sqrtxdx=`_____
(A) 1
(B) –2
(C) 2
(D) –1
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x)) dx` = ______.
`int_2^4 x/(x^2 + 1) "d"x` = ______
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^{pi/2} log(tanx)dx` = ______
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:
`int_(-5)^5 x^7/(x^4 + 10) dx` = ______.
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_a^b f(x)dx` = ______.
Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.
If `int_0^(π/2) log cos x dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.
`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.
Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
`int_0^(2a)f(x)/(f(x)+f(2a-x)) dx` = ______
Evaluate: `int_-1^1 x^17.cos^4x dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`