मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate : Int "E"^(3"X")/("E"^(3"X") + 1) Dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int  "e"^(3"x")/("e"^(3"x") + 1)` dx

बेरीज

उत्तर

Let I = `"e"^(3"x")/("e"^(3"x") + 1)` dx

Put e3x + 1 = t

Diff. both the sides w.r.t. x 

3 e3x = dt ⇒  e3x  dx = `"dt"/3`

`therefore "I" = 1/3 int  "dt"/"t"`

`= 1/3 "log" |"t"| + "c"`

`= 1/3 "log" |e^(3x) + 1| + "C"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2015-2016 (July)

APPEARS IN

संबंधित प्रश्‍न

Prove that: `int_0^(2a)f(x)dx=int_0^af(x)dx+int_0^af(2a-x)dx`


Evaluate :`int_0^pi(xsinx)/(1+sinx)dx`


Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


If `int_0^alpha(3x^2+2x+1)dx=14` then `alpha=`

(A) 1

(B) 2

(C) –1

(D) –2


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


`∫_4^9 1/sqrtxdx=`_____

(A) 1

(B) –2

(C) 2

(D) –1


Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`


Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))  dx` = ______.


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^{pi/2} log(tanx)dx` = ______


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


Evaluate the following:

`int_0^(pi/2)  "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


`int_0^(2"a") "f"("x") "dx" = int_0^"a" "f"("x") "dx" + int_0^"a" "f"("k" - "x") "dx"`, then the value of k is:


`int_(-5)^5  x^7/(x^4 + 10)  dx` = ______.


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


`int_a^b f(x)dx` = ______.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


If `int_0^(π/2) log cos x  dx = π/2 log(1/2)`, then `int_0^(π/2) log sec dx` = ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


Evaluate: `int_1^3 sqrt(x + 5)/(sqrt(x + 5) + sqrt(9 - x))dx`


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


`int_0^(2a)f(x)/(f(x)+f(2a-x))  dx` = ______


Evaluate: `int_-1^1 x^17.cos^4x  dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×