Advertisements
Advertisements
प्रश्न
Evaluate : `int 1/("x" [("log x")^2 + 4]) "dx"`
उत्तर
Let I = `int 1/("x" [("log x")^2 + 4]) "dx"`
Put log x = t
Differentiating w.r.t.x
`1/"x" "dx" = "dt"`
`therefore "I" = int 1/("t"^2 + 4) "dt"`
`therefore "I" = int 1/("t"^2 + (2)^2) "dt"`
`= 1/2 "tan"^(-1)("t"/2) + c`
By using `int 1/("x"^2 + "a"^2) "dx" = 1/"a" "tan"^(-1) ("x"/"a") + "c"`
∴ I = `1/2 "tan"^(-1) ("log x"/2) + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.
Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total revenue R is increasing.
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^2 e^x dx` = ______.
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
Evaluate `int_1^3 x^2*log x "d"x`
`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?
`int_0^4 1/(1 + sqrtx)`dx = ______.
`int_0^{pi/2} xsinx dx` = ______
`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?
If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______
`int_{pi/6}^{pi/3} sin^2x dx` = ______
`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______
`int_-1^1x^2/(1+x^2) dx=` ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_0^pi x sin^2x dx` = ______
`int_(-1)^1 (x + x^3)/(9 - x^2) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx
Evaluate: `int_(-1)^3 |x^3 - x|dx`
`int_a^b f(x)dx` = ______.
The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.
If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.
Evaluate: `int_0^(π/4) log(1 + tanx)dx`.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following definite integral:
`int_1^3 log x dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`