मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate : Int 1/("X" ("Log X")^2 + 4) "Dx" - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate : `int 1/("x" [("log x")^2 + 4])  "dx"`

बेरीज

उत्तर

Let I = `int 1/("x" [("log x")^2 + 4])  "dx"`

Put log x = t

Differentiating w.r.t.x 

`1/"x" "dx" = "dt"`

`therefore "I" = int 1/("t"^2 + 4)  "dt"`


`therefore "I" = int 1/("t"^2 + (2)^2) "dt"`


`= 1/2 "tan"^(-1)("t"/2) + c`


By using `int 1/("x"^2 + "a"^2) "dx" = 1/"a" "tan"^(-1) ("x"/"a") + "c"`


∴ I = `1/2 "tan"^(-1) ("log x"/2) + "c"`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2017-2018 (July) Set 1

APPEARS IN

संबंधित प्रश्‍न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


`int_(-pi/2)^(pi/2) (x^3 + x cos x + tan^5 x + 1) dx ` is ______.


Evaluate: `int_1^4 {|x -1|+|x - 2|+|x - 4|}dx`


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^2 e^x dx` = ______.


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


Evaluate `int_1^3 x^2*log x  "d"x`


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_0^4 1/(1 + sqrtx)`dx = ______.


`int_0^{pi/2} xsinx dx` = ______


`int_(pi/18)^((4pi)/9) (2 sqrt(sin x))/(sqrt (sin x) + sqrt(cos x))` dx = ?


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


`int_0^{pi/2} (cos2x)/(cosx + sinx)dx` = ______


`int_-1^1x^2/(1+x^2)  dx=` ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


`int_0^pi x sin^2x dx` = ______ 


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Show that `int_0^(pi/2) (sin^2x)/(sinx + cosx) = 1/sqrt(2) log (sqrt(2) + 1)`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.


Evaluate:

`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`


Evaluate: `int_0^(2π) (1)/(1 + e^(sin x)`dx


Evaluate: `int_(-1)^3 |x^3 - x|dx`


`int_a^b f(x)dx` = ______.


The value of `int_((-1)/sqrt(2))^(1/sqrt(2)) (((x + 1)/(x - 1))^2 + ((x - 1)/(x + 1))^2 - 2)^(1/2)`dx is ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


Evaluate: `int_0^(π/4) log(1 + tanx)dx`.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate the following definite integral:

`int_1^3 log x  dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×