Advertisements
Advertisements
प्रश्न
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
पर्याय
`2sqrt(2)`
`2(sqrt(2) + 1)`
2
`2(sqrt(2) - 1)`
उत्तर
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to `2(sqrt(2) - 1)`.
Explanation:
Let I = `int_0^(pi/2) sqrt(1 - sin2x) "d"x`
= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx)) "d"x`
= `int_0^(pi/2) sqrt((sinx - cosx)^2) "d"x`
= `int_0^(pi/2) +- (sinx - cosx) "d"x`
= `int_0^(pi/4) - (sin x - cosx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "dx`
= `int_0^(pi/4) (cosx - sinx) "d"x + int_(pi/4)^(pi/2) (sinx - cosx) "d"x`
= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`
= `[(sin pi/4 + cos pi/4) - (sin0 - cos0)] - [(cos pi/2 + sin pi/2) - (cos pi/4 + sin pi/4)]`
= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`
= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`
= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`
= `4/sqrt(2) - 2`
= `2sqrt(2) - 2`
= `2(sqrt(2) - 1)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `intlogx/(1+logx)^2dx`
Evaluate : `intsec^nxtanxdx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Evaluate = `int (tan x)/(sec x + tan x)` . dx
Evaluate the following integral:
`int_0^1 x(1 - x)^5 *dx`
`int_0^2 e^x dx` = ______.
`int_-2^1 dx/(x^2 + 4x + 13)` = ______
`int_(pi/4)^(pi/2) sqrt(1-sin 2x) dx =` ______.
`int_-1^1x^2/(1+x^2) dx=` ______.
The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______
`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`
If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0
⇒ `1/4 (square - square)` = 0
⇒ b4 – `square` = 0
⇒ (b2 – a2)(`square` + `square`) = 0
⇒ b2 – `square` = 0 as a2 + b2 ≠ 0
⇒ b = ± `square`
Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?
If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.
The value of `int_0^(π/4) (sin 2x)dx` is ______.
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_1^3 x^2 logx dx`
`int_-9^9 x^3/(4-x^2) dx` =______
Evaluate the following integral:
`int_0^1x (1 - x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_1^3logx dx`