मराठी

D∫0π21-sin2x dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to ______.

पर्याय

  • `2sqrt(2)`

  • `2(sqrt(2) + 1)`

  • 2

  • `2(sqrt(2) - 1)`

MCQ
रिकाम्या जागा भरा

उत्तर

`int_0^(pi/2) sqrt(1 - sin2x)  "d"x` is equal to `2(sqrt(2) - 1)`.

Explanation:

Let I = `int_0^(pi/2) sqrt(1 - sin2x)  "d"x`

= `int_0^(pi/2) sqrt((sin^2x + cos^2x - 2 sinx cosx))  "d"x`

= `int_0^(pi/2) sqrt((sinx - cosx)^2)  "d"x`

= `int_0^(pi/2) +- (sinx - cosx)  "d"x`

= `int_0^(pi/4) - (sin x - cosx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "dx`

= `int_0^(pi/4) (cosx - sinx)  "d"x + int_(pi/4)^(pi/2) (sinx - cosx)  "d"x`

= `[sinx + cosx]_0^(pi/4) + [- cosx - sinx]_(pi/4)^(pi/2)`

= `[(sin  pi/4 + cos  pi/4) - (sin0 - cos0)] - [(cos  pi/2 + sin  pi/2) - (cos  pi/4 + sin  pi/4)]`

= `[(1/sqrt(2) + 1/sqrt(2)) - (+ 1)] - [(0 + 1) - (1/sqrt(2) + 1/sqrt(2))]`

= `(2/sqrt(2) - 1) - (1 - 2/sqrt(2))`

= `2/sqrt(2) - 1 -1 + 2/(sqrt(2))`

= `4/sqrt(2) - 2`

= `2sqrt(2) - 2`

= `2(sqrt(2) - 1)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 58 | पृष्ठ १६९

संबंधित प्रश्‍न

 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

Evaluate : `intsec^nxtanxdx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (sin x - cos x)/(1+sinx cos x) dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Evaluate = `int (tan x)/(sec x + tan x)` . dx


Evaluate the following integral:

`int_0^1 x(1 - x)^5 *dx`


`int_0^2 e^x dx` = ______.


`int_-2^1 dx/(x^2 + 4x + 13)` = ______


`int_(pi/4)^(pi/2) sqrt(1-sin 2x)  dx =` ______.


`int_-1^1x^2/(1+x^2)  dx=` ______.


The value of `int_2^7 (sqrtx)/(sqrt(9 - x) + sqrtx)dx` is ______ 


`int_0^(pi/2) 1/(1 + cos^3x) "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7) - x)dx`


If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `lim_("n"→∞)(int_(1/("n"+1))^(1/"n") tan^-1("n"x)"d"x)/(int_(1/("n"+1))^(1/"n") sin^-1("n"x)"d"x) = "p"/"q"`, (where p and q are coprime), then (p + q) is ______.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_1^3 x^2 logx  dx`


 `int_-9^9 x^3/(4-x^2) dx` =______


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3dx`


Evaluate the following definite intergral:

`int_1^3logx  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×