मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

If ∫abx3dx = 0, then (x4□)ab = 0 ⇒ 14(□-□) = 0 ⇒ b4 – □ = 0 ⇒ (b2 – a2)(□ + □) = 0 ⇒ b2 – □ = 0 as a2 + b2 ≠ 0 ⇒ b = ± □ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If `int_a^b x^3 dx` = 0, then `(x^4/square)_a^b` = 0

⇒ `1/4 (square - square)` = 0

⇒ b4 – `square` = 0

⇒ (b2 – a2)(`square` + `square`) = 0

⇒ b2 – `square` = 0 as a2 + b2 ≠ 0

⇒ b = ± `square`

रिकाम्या जागा भरा
बेरीज

उत्तर

`int_a^b x^3 dx` = 0, then `(x^4/bb4)_a^b` = 0

⇒ `1/4` (b4a4) = 0

⇒ b4a4 = 0

⇒ (b2 – a2)(b2 + a2) = 0

⇒ b2a2 = 0 as a2 + b2 ≠ 0

⇒ b = ± a

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2024-2025 (March) Model set 1 by shaalaa.com

संबंधित प्रश्‍न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^2 xsqrt(2 -x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_((-pi)/2)^(pi/2) sin^2 x  dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Show that `int_0^a f(x)g (x)dx = 2 int_0^a f(x) dx`  if f and g are defined as f(x) = f(a-x) and g(x) + g(a-x) = 4.


Evaluate the definite integrals `int_0^pi (x tan x)/(sec x + tan x)dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate : `int _0^(pi/2) "sin"^ 2  "x"  "dx"`


The total revenue R = 720 - 3x2 where x is number of items sold. Find x for which total  revenue R is increasing.


`int_0^2 e^x dx` = ______.


Choose the correct alternative:

`int_(-9)^9 x^3/(4 - x^2)  "d"x` =


`int_(-7)^7 x^3/(x^2 + 7)  "d"x` = ______


`int (cos x + x sin x)/(x(x + cos x))`dx = ?


`int_0^1 ((x^2 - 2)/(x^2 + 1))`dx = ?


`int_0^1 (1 - x/(1!) + x^2/(2!) - x^3/(3!) + ... "upto" ∞)` e2x dx = ?


`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______ 


If f(x) = |x - 2|, then `int_-2^3 f(x) dx` is ______


The value of `int_1^3 dx/(x(1 + x^2))` is ______ 


`int_0^1 "e"^(5logx) "d"x` = ______.


`int_(-1)^1 (x + x^3)/(9 - x^2)  "d"x` = ______.


Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_("a" + "c")^("b" + "c") "f"(x) "d"x` is equal to ______.


`int_(-1)^1 (x^3 + |x| + 1)/(x^2 + 2|x| + 1) "d"x` is equal to ______.


If `int_0^1 "e"^"t"/(1 + "t") "dt"` = a, then `int_0^1 "e"^"t"/(1 + "t")^2 "dt"` is equal to ______.


If `int_0^"a" 1/(1 + 4x^2) "d"x = pi/8`, then a = ______.


If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:


Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


`int_a^b f(x)dx` = ______.


Let f be a real valued continuous function on [0, 1] and f(x) = `x + int_0^1 (x - t)f(t)dt`. Then, which of the following points (x, y) lies on the curve y = f(x)?


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


Let f be continuous periodic function with period 3, such that `int_0^3f(x)dx` = 1. Then the value of `int_-4^8f(2x)dx` is ______.


`int_((-π)/2)^(π/2) log((2 - sinx)/(2 + sinx))` is equal to ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate `int_0^(π//4) log (1 + tanx)dx`.


Evaluate `int_-1^1 |x^4 - x|dx`.


`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.


Assertion (A): `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x))dx` = 3.

Reason (R): `int_a^b f(x) dx = int_a^b f(a + b - x) dx`.


The value of `int_0^(π/4) (sin 2x)dx` is ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Solve the following.

`int_1^3 x^2 logx  dx`


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integrals:

`int_-9^9 x^3/(4 - x^3 ) dx`


Evaluate:

`int_0^6 |x + 3|dx`


Evaluate:

`int_0^sqrt(2)[x^2]dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×