मराठी

If xxdxxkkc∫(logx)2xdx=(logx)kk+c, then the value of k is: - Mathematics

Advertisements
Advertisements

प्रश्न

If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:

पर्याय

  • 3

  • 2

  • 1

  • None of the above options

MCQ

उत्तर

3

Explanation:

Given, `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`

Taking L.H.S. = `int (log "x")^2/"x" "dx"`

Let, log x = t

∴ `1/"x" "dx" = "dt"`

= `int "t"^2"dt" = "t"^3/3 + "c"`

Substituting the value of t,

= `(log "x")^3/3 + "c"`

On comparing with R.H.S. we get

k = 3

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
2021-2022 (April) Set 1

संबंधित प्रश्‍न

Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_2^8 |x - 5| dx`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


The value of `int_0^(pi/2) log  ((4+ 3sinx)/(4+3cosx))` dx is ______.


Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`


\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that

\[\int_a^b xf\left( x \right)dx = \left( \frac{a + b}{2} \right) \int_a^b f\left( x \right)dx\]

Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`


`int_0^1 "e"^(2x) "d"x` = ______


`int_1^2 1/(2x + 3)  dx` = ______


Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x))  "d"x`


`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______


`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?


`int_0^pi x*sin x*cos^4x  "d"x` = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


If `f(a + b - x) = f(x)`, then `int_0^b x f(x)  dx` is equal to


Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`


`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec"  x))))dx` is equal to ______.


Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


Evaluate the following definite integral:

`int_-2^3 1/(x + 5) dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_2^3x/((x+2)(x+3))dx`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×