Advertisements
Advertisements
प्रश्न
If `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`, then the value of k is:
पर्याय
3
2
1
None of the above options
उत्तर
3
Explanation:
Given, `int (log "x")^2/"x" "dx" = (log "x")^"k"/"k" + "c"`
Taking L.H.S. = `int (log "x")^2/"x" "dx"`
Let, log x = t
∴ `1/"x" "dx" = "dt"`
= `int "t"^2"dt" = "t"^3/3 + "c"`
Substituting the value of t,
= `(log "x")^3/3 + "c"`
On comparing with R.H.S. we get
k = 3
APPEARS IN
संबंधित प्रश्न
Evaluate: `int_(-a)^asqrt((a-x)/(a+x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx`
By using the properties of the definite integral, evaluate the integral:
`int_2^8 |x - 5| dx`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
The value of `int_0^(pi/2) log ((4+ 3sinx)/(4+3cosx))` dx is ______.
Evaluate `int_0^(pi/2) cos^2x/(1+ sinx cosx) dx`
\[\int\limits_0^a 3 x^2 dx = 8,\] find the value of a.
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
`int_0^1 "e"^(2x) "d"x` = ______
`int_1^2 1/(2x + 3) dx` = ______
Evaluate `int_1^2 (sqrt(x))/(sqrt(3 - x) + sqrt(x)) "d"x`
`int_0^(pi"/"4)` log(1 + tanθ) dθ = ______
`int_0^1 "dx"/(sqrt(1 + x) - sqrtx)` = ?
`int_0^pi x*sin x*cos^4x "d"x` = ______.
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_0^(π/2) 1/(1 + (tanx)^(2/3)) dx`
`int_0^5 cos(π(x - [x/2]))dx` where [t] denotes greatest integer less than or equal to t, is equal to ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
`int_0^(π/2)((root(n)(secx))/(root(n)(secx + root(n)("cosec" x))))dx` is equal to ______.
Evaluate: `int_(-π//4)^(π//4) (cos 2x)/(1 + cos 2x)dx`.
Evaluate the following integral:
`int_0^1 x(1 - 5)^5`dx
Evaluate the following definite integral:
`int_-2^3 1/(x + 5) dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`