मराठी

Dx∫-π4π4dx1+cos2x is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.

पर्याय

  • 1

  • 2

  • 3

  • 4

MCQ
रिकाम्या जागा भरा

उत्तर

`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to 1.

Explanation:

Let I = `int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)`

= `int_((-pi)/4)^(pi/4) "dx"/(2cos^2x)`

= `1/2 int_((-pi)/4)^(pi/4) sec^2x  "d"x`

= `1/2 [tan x]_((-pi)/4)^(pi/4)`

= `1/2 [tan  pi/4 - tan (- pi/4)]`

= `1/2[1 + 1]`

= `1/2 xx 2`

= 1

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise [पृष्ठ १६९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 7 Integrals
Exercise | Q 57 | पृष्ठ १६९

संबंधित प्रश्‍न

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/4) log (1+ tan x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi (x  dx)/(1+ sin x)`


By using the properties of the definite integral, evaluate the integral:

`int_(pi/2)^(pi/2) sin^7 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.


\[\int_\pi^\frac{3\pi}{2} \sqrt{1 - \cos2x}dx\]

Evaluate :  `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Find : `int_  (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.


`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^1 x tan^-1x  dx` = ______ 


`int_0^pi sin^2x.cos^2x  dx` = ______ 


`int_0^1 log(1/x - 1) "dx"` = ______.


`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.


Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`


Evaluate `int_(-1)^2 "f"(x)  "d"x`, where f(x) = |x + 1| + |x| + |x – 1|


`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.


`int_0^(pi/2)  cos x "e"^(sinx)  "d"x` is equal to ______.


Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`


If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.


`int_0^1|3x - 1|dx` equals ______.


If f(x) = `{{:(x^2",", "where"  0 ≤ x < 1),(sqrt(x)",", "when"  1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.


Evaluate the following definite integral:

`int_4^9 1/sqrt"x" "dx"`


Evaluate the following integral:

`int_0^1 x(1-x)^5 dx`


Solve the following.

`int_0^1e^(x^2)x^3 dx`


Solve the following.

`int_0^1 e^(x^2) x^3dx`


Evaluate the following integral:

`int_0^1 x(1 - x)^5 dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×