Advertisements
Advertisements
प्रश्न
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
पर्याय
1
2
3
4
उत्तर
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to 1.
Explanation:
Let I = `int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)`
= `int_((-pi)/4)^(pi/4) "dx"/(2cos^2x)`
= `1/2 int_((-pi)/4)^(pi/4) sec^2x "d"x`
= `1/2 [tan x]_((-pi)/4)^(pi/4)`
= `1/2 [tan pi/4 - tan (- pi/4)]`
= `1/2[1 + 1]`
= `1/2 xx 2`
= 1
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/4) log (1+ tan x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
By using the properties of the definite integral, evaluate the integral:
`int_(pi/2)^(pi/2) sin^7 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^4 |x - 1| dx`
\[\int\limits_0^k \frac{1}{2 + 8 x^2} dx = \frac{\pi}{16},\] find the value of k.
Evaluate : `int 1/sqrt("x"^2 - 4"x" + 2) "dx"`
Find `dy/dx, if y = cos^-1 ( sin 5x)`
Find : `int_ (2"x"+1)/(("x"^2+1)("x"^2+4))d"x"`.
`int_0^(pi/4) (sec^2 x)/((1 + tan x)(2 + tan x))`dx = ?
`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.
`int_0^1 x tan^-1x dx` = ______
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^1 log(1/x - 1) "dx"` = ______.
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Evaluate `int_(-1)^2 "f"(x) "d"x`, where f(x) = |x + 1| + |x| + |x – 1|
`int_0^(2"a") "f"(x) "d"x = 2int_0^"a" "f"(x) "d"x`, if f(2a – x) = ______.
`int_0^(pi/2) cos x "e"^(sinx) "d"x` is equal to ______.
Evaluate: `int_1^3 sqrt(x)/(sqrt(x) + sqrt(4) - x) dx`
If `int_0^1(sqrt(2x) - sqrt(2x - x^2))dx = int_0^1(1 - sqrt(1 - y^2) - y^2/2)dy + int_1^2(2 - y^2/2)dy` + I then I equal.
`int_0^1|3x - 1|dx` equals ______.
If f(x) = `{{:(x^2",", "where" 0 ≤ x < 1),(sqrt(x)",", "when" 1 ≤ x < 2):}`, then `int_0^2f(x)dx` equals ______.
Evaluate the following definite integral:
`int_4^9 1/sqrt"x" "dx"`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3 dx`
Solve the following.
`int_0^1 e^(x^2) x^3dx`
Evaluate the following integral:
`int_0^1 x(1 - x)^5 dx`
Evaluate the following integral:
`int_0^1 x (1 - x)^5 dx`