Advertisements
Advertisements
प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^pi (x dx)/(1+ sin x)`
उत्तर
Let `I = int_0^pi (x dx)/ (1 + sin x)`
`I = int_0^pi (pi - x)/ (1 + sin (pi-x)) dx` `...[∵ int_0^a f (x) dx = int_0^a f (a - x) dx]`
`= int_0^pi (pi - x)/ (1 + sin x) dx`
Adding (i) and (ii), we get
`2 I = int_0^pi (x + pi - x)/ (1 + sin x) dx`
`= pi int_0^pi 1/ (1 + sin x) dx`
`= pi int_0^pi (1 - sin x)/ (1 - sin^2 x) dx`
`= pi int_0^pi (1 - sin x)/(cos^2 x) dx`
`= pi int_0^pi (sec^2 x - tan x sec x) dx`
`= pi [tan x - sec x]_0^pi`
= π [(tan π - sec π) - (tan0 - sec0)]
= π [(0 - (-1)) - (0 - 1)]
= 2π
Hence, I = π
APPEARS IN
संबंधित प्रश्न
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^1 x(1-x)^n dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^(pi/2) (2log sin x - log sin 2x)dx`
By using the properties of the definite integral, evaluate the integral:
`int_((-pi)/2)^(pi/2) sin^2 x dx`
By using the properties of the definite integral, evaluate the integral:
`int_0^pi log(1+ cos x) dx`
If \[f\left( a + b - x \right) = f\left( x \right)\] , then prove that
Prove that `int_0^"a" "f" ("x") "dx" = int_0^"a" "f" ("a" - "x") "d x",` hence evaluate `int_0^pi ("x" sin "x")/(1 + cos^2 "x") "dx"`
Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`
`int_0^2 e^x dx` = ______.
`int_2^3 x/(x^2 - 1)` dx = ______
`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.
`int_3^9 x^3/((12 - x)^3 + x^3)` dx = ______
If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.
`int_0^pi sin^2x.cos^2x dx` = ______
`int_0^(pi/2) 1/(1 + cosx) "d"x` = ______.
`int_(-pi/4)^(pi/4) 1/(1 - sinx) "d"x` = ______.
Evaluate `int_0^(pi/2) (tan^7x)/(cot^7x + tan^7x) "d"x`
Find `int_2^8 sqrt(10 - x)/(sqrt(x) + sqrt(10 - x)) "d"x`
Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`
Evaluate the following:
`int_0^(pi/2) "dx"/(("a"^2 cos^2x + "b"^2 sin^2 x)^2` (Hint: Divide Numerator and Denominator by cos4x)
`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.
`int_0^(pi/2) sqrt(1 - sin2x) "d"x` is equal to ______.
Evaluate:
`int_2^8 (sqrt(10 - "x"))/(sqrt"x" + sqrt(10 - "x")) "dx"`
`int (dx)/(e^x + e^(-x))` is equal to ______.
If `f(a + b - x) = f(x)`, then `int_0^b x f(x) dx` is equal to
Evaluate: `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tanx)`
`int_a^b f(x)dx` = ______.
The value of the integral `int_(-1)^1log_e(sqrt(1 - x) + sqrt(1 + x))dx` is equal to ______.
The integral `int_0^2||x - 1| -x|dx` is equal to ______.
`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.
Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.
`int_-1^1 |x - 2|/(x - 2) dx`, x ≠ 2 is equal to ______.
Evaluate the following integral:
`int_-9^9 x^3/(4 - x^2) dx`
Solve the following.
`int_2^3x/((x+2)(x+3))dx`
Evaluate the following integral:
`int_0^1 x(1-x)^5 dx`
Solve the following.
`int_0^1e^(x^2)x^3dx`
Evaluate the following integral:
`int_-9^9x^3/(4-x^2)dx`
Evaluate the following definite integral:
`int_-2^3(1)/(x + 5) dx`