मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी वाणिज्य (इंग्रजी माध्यम) इयत्ता १२ वी

Evaluate the following integrals : ∫25xx+7-x⋅dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following integrals : `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`

बेरीज

उत्तर

Let I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx`      ...(i)

= `int_2^5 sqrt(2 + 5 - x)/(sqrt(2 + 5 - x) + sqrt(7 - (2 + 5 - x)))*dx        ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`

∴ I = `int_2^5 sqrt(7 - x)/(sqrt(7 - x) + sqrt(x))*dx`       ...(ii)
Adding (i) and (ii), we get

2I = `int_2^5 sqrt(x)/(sqrt(x) + sqrt(7 - x))*dx + int_2^5 sqrt(7 - x)/(sqrt(7 - x) + sqrt(x))*dx` 

= `int_2^5 (sqrt(x) + sqrt(7 - x))/(sqrt(x) + sqrt(7 - x))*dx`

= `int_2^5 1*dx`

= `[x]_2^5`

∴ 2I = 5 – 2 = 3
∴ I = `(3)/(2)`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Definite Integration - EXERCISE 6.2 [पृष्ठ १४८]

APPEARS IN

बालभारती Mathematics and Statistics 1 (Commerce) [English] 12 Standard HSC Maharashtra State Board
पाठ 6 Definite Integration
EXERCISE 6.2 | Q 4) | पृष्ठ १४८

संबंधित प्रश्‍न

If `int_0^alpha3x^2dx=8` then the value of α is :

(a) 0

(b) -2

(c) 2 

(d) ±2


 
 

Evaluate : `intlogx/(1+logx)^2dx`

 
 

By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) cos^2 x dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2)  sqrt(sinx)/(sqrt(sinx) + sqrt(cos x)) dx` 


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) sin^(3/2)x/(sin^(3/2)x + cos^(3/2) x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_(-5)^5 | x + 2| dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^1 x(1-x)^n dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^(pi/2) (2log sin x - log sin 2x)dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^pi log(1+ cos x) dx`


By using the properties of the definite integral, evaluate the integral:

`int_0^4 |x - 1| dx`


Prove that `int _a^b f(x) dx = int_a^b f (a + b -x ) dx`  and hence evaluate   `int_(pi/6)^(pi/3) (dx)/(1 + sqrt(tan x))` .   


Find `dy/dx, if y = cos^-1 ( sin 5x)`


Evaluate: `int_0^pi ("x"sin "x")/(1+ 3cos^2 "x") d"x"`.


`int_2^4 x/(x^2 + 1)  "d"x` = ______


`int_0^{pi/2} xsinx dx` = ______


`int_"a"^"b" sqrtx/(sqrtx + sqrt("a" + "b" - x)) "dx"` = ______.


`int_0^1 (1 - x)^5`dx = ______.


`int_0^(pi/2) sqrt(cos theta) * sin^2 theta "d" theta` = ______.


`int_{pi/6}^{pi/3} sin^2x dx` = ______ 


If `int_0^"k" "dx"/(2 + 32x^2) = pi/32,` then the value of k is ______.


`int_0^pi x sin^2x dx` = ______ 


Find `int_0^(pi/4) sqrt(1 + sin 2x) "d"x`


`int_0^(pi/2) (sin^"n" x"d"x)/(sin^"n" x + cos^"n" x)` = ______.


`int_((-pi)/4)^(pi/4) "dx"/(1 + cos2x)` is equal to ______.


`int_a^b f(x)dx` = ______.


`int_0^π(xsinx)/(1 + cos^2x)dx` equals ______.


If `β + 2int_0^1x^2e^(-x^2)dx = int_0^1e^(-x^2)dx`, then the value of β is ______.


Let `int ((x^6 - 4)dx)/((x^6 + 2)^(1/4).x^4) = (ℓ(x^6 + 2)^m)/x^n + C`, then `n/(ℓm)` is equal to ______.


With the usual notation `int_1^2 ([x^2] - [x]^2)dx` is equal to ______.


If `int_0^K dx/(2 + 18x^2) = π/24`, then the value of K is ______.


Evaluate: `int_0^π x/(1 + sinx)dx`.


Evaluate the following integral:

`int_0^1 x(1 - 5)^5`dx


If `int_0^1(3x^2 + 2x+a)dx = 0,` then a = ______


Evaluate the following integral:

`int_0^1x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9 x^3/(4 - x^2) dx`


Evaluate the following integral:

`int_0^1 x (1 - x)^5 dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Evaluate the following definite intergral:

`int_1^2 (3x)/(9x^2 - 1) dx`


Evaluate the following integral:

`int_-9^9x^3/(4-x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×