Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
उत्तर
Let I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx` ...(i)
= `int_1^2 sqrt(1 + 2 - x)/(sqrt(3 - (1 + 2 - x)) + sqrt(1 + 2 - x))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx + int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx`
= `int_1^2 (sqrt(x) + sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))*dx`
= `int_1^2 1*dx`
= `[x]_1^2`
∴ 2I = 2 – 1 = 1
∴ I = `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_2^3 (1)/(x^2 + 5x + 6)*dx`
Evaluate : `int_0^(pi/2) cosx/((1 + sinx)(2 + sin x))*dx`
Evaluate : `int _((1)/(sqrt(2)))^1 (e^(cos^-1x) sin^-1x)/(sqrt(1 - x^2))*dx`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Choose the correct alternative :
`int_(-7)^7 x^3/(x^2 + 7)*dx` =
Fill in the blank : `int_4^9 (1)/sqrt(x)*dx` = _______
Fill in the blank : `int_2^3 x/(x^2 - 1)*dx` = _______
State whether the following is True or False : `int_2^7 sqrt(x)/(sqrt(x) + sqrt(9 - x))*dx = (9)/(2)`
Solve the following : `int_2^4 x/(x^2 + 1)*dx`
`int_1^2 ("e"^(1/x))/(x^2) "d"x` =
Prove that: `int_"a"^"b" "f"(x) "d"x = int_"a"^"c""f"(x) "d"x + int_"c"^"b" "f"(x) "d"x`, where a < c < b
Evaluate `int_1^2 "e"^(2x) (1/x - 1/(2x^2)) "d"x`
`int_(-5)^5 log ((7 - x)/(7 + x))`dx = ?
`int_0^(pi/2) root(7)(sin x)/(root(7)(sin x) + root(7)(cos x))`dx = ?
Evaluate the following integral:
`int_0^1 x(1-x)^5dx`
Evaluate the following definite integral:
`int_4^9 1/sqrt(x)dx`
Evaluate the following definite integral:
`int_1^3 logx.dx`
Evaluate the following definite intergral:
`int_-2^3 1/(x+5)dx`
Evaluate the following definite intergral:
`int_1^3 log x dx`