Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx`
उत्तर
Let I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx` ...(i)
= `int_1^2 sqrt(1 + 2 - x)/(sqrt(3 - (1 + 2 - x)) + sqrt(1 + 2 - x))*dx ...[because int_"a"^"b" f(x)*dx = int_"a"^"b" f("a" + "b" - x)*dx]`
∴ I = `int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx` ...(ii)
Adding (i) and (ii), we get
2I = `int_1^2 sqrt(x)/(sqrt(3 - x) + sqrt(x))*dx + int_1^2 sqrt(3 - x)/(sqrt(x) + sqrt(3 - x))*dx`
= `int_1^2 (sqrt(x) + sqrt(3 - x))/(sqrt(x) + sqrt(3 - x))*dx`
= `int_1^2 1*dx`
= `[x]_1^2`
∴ 2I = 2 – 1 = 1
∴ I = `(1)/(2)`.
APPEARS IN
संबंधित प्रश्न
Evaluate : `int_0^pi (1)/(3 + 2sinx + cosx)*dx`
Evaluate : `int_0^(pi/4) sec^4x*dx`
Evaluate the following : `int_0^1 (log(x + 1))/(x^2 + 1)*dx`
Evaluate the following : `int_(pi/4)^(pi/2) (cos theta)/[cos theta/2 + sin theta/2]^3*d theta`
Evaluate the following : `int_0^1 1/(1 + sqrt(x))*dx`
Evaluate the following : `int_0^1 t^5 sqrt(1 - t^2)*dt`
Evaluate the following : If f(x) = a + bx + cx2, show that `int_0^1 f(x)*dx = (1/(6)[f(0) + 4f(1/2) + f(1)]`
Choose the correct alternative :
`int_4^9 dx/sqrt(x)` =
State whether the following is True or False : `int_0^"a" f(x)*dx = int_"a"^0 f("a" - x)*dx`
Solve the following : `int_1^2 x^2*dx`
State whether the following statement is True or False:
`int_"a"^"b" "f"(x) "d"x = int_"a"^"b" "f"("a" + "b" - x) "d"x`
`int_0^1 tan^-1 ((2x - 1)/(1 + x - x^2))` dx = ?
Evaluate the following definite integral :
`int_1^2 (3"x")/((9"x"^2 - 1)) "dx"`
Evaluate the following integrals:
`int_-9^9 (x^3)/(4 - x^2) dx`
Evaluate the following definite intergral:
`int_1^2 (3x)/((9x^2-1 )`dx
Solve the following:
`int_0^1e^(x^2)x^3dx`
Evaluate the following definite intergral:
`int_4^9 1/sqrtx dx`
Evaluate the following definite intergral:
`int_1^3 log x·dx`